Abstract
1. Neural regulation of the density of sodium (Na+) channels in rat muscle was studied by measuring specific binding of tritiated saxitoxin ([3H]STX) to muscles from rat hindlimbs during normal development and in rats in which neuromuscular function was interrupted by sciatic nerve section or neuromuscular blockade with botulinum toxin (BoTX). 2. The normal developmental increase in [3H]STX binding site numbers followed a simple exponential with a time constant of 12 days. The most rapid incorporation of channels coincided with the onset of accelerated muscle growth and increased neuromuscular activity at 2 weeks of age. 3. Elimination of neuromuscular activity retarded muscle growth and inhibited the normal incorporation of Na+ channels into neonatal muscle. Muscles denervation was more effective than BoTX paralysis: denervation at 2 weeks of age prevented the normal 3-fold increase in the binding site density between 2 and 3 weeks of age while age-matched BoTX-treated muscles incorporated an average of 66% of the normal Na+ channel incorporation. 4. Denervation and BoTX treatment were equally effective in reducing the numbers of [3H]STX binding sites in adult muscle. A reduction of 30% in binding sites brought the numbers to levels which corresponded with levels normally seen in muscles at 3 weeks of neonatal development. 5. It was concluded that the neural influence on incorporation of Na+ channels into membranes of neonatal muscle is, at least in part, mediated by neuromuscular activity.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bambrick L., Gordon T. Acetylcholine receptors and sodium channels in denervated and botulinum-toxin-treated adult rat muscle. J Physiol. 1987 Jan;382:69–86. doi: 10.1113/jphysiol.1987.sp016356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beam K. G., Caldwell J. H., Campbell D. T. Na channels in skeletal muscle concentrated near the neuromuscular junction. Nature. 1985 Feb 14;313(6003):588–590. doi: 10.1038/313588a0. [DOI] [PubMed] [Google Scholar]
- Bennett M. R., Pettigrew A. G. The formation of synapses in striated muscle during development. J Physiol. 1974 Sep;241(2):515–545. doi: 10.1113/jphysiol.1974.sp010670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner H. R., Sakmann B. Neurotrophic control of channel properties at neuromuscular synapses of rat muscle. J Physiol. 1983 Apr;337:159–171. doi: 10.1113/jphysiol.1983.sp014617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. C., Holland R. L., Hopkins W. G. Restoration of focal multiple innervation in rat muscles by transmission block during a critical stage of development. J Physiol. 1981 Sep;318:355–364. doi: 10.1113/jphysiol.1981.sp013869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. C., Hopkins W. G., Keynes R. J. Comparison of effects of denervation and botulinum toxin paralysis on muscle properties in mice. J Physiol. 1982 Jun;327:29–37. doi: 10.1113/jphysiol.1982.sp014217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. C., Jansen J. K., Van Essen D. Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. J Physiol. 1976 Oct;261(2):387–422. doi: 10.1113/jphysiol.1976.sp011565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Coster W., De Reuck J., Vander Eecken H. Early changes in experimental denervated rat gastrocnemius muscle. A semi-automatic quantitative study. Acta Neuropathol. 1985;67(1-2):114–120. doi: 10.1007/BF00688131. [DOI] [PubMed] [Google Scholar]
- Dolezal V., Vyskocil F., Tucek S. Decrease of the spontaneous non-quantal release of acetylcholine from the phrenic nerve in botulinum-poisoned rat diaphragm. Pflugers Arch. 1983 Jun 1;397(4):319–322. doi: 10.1007/BF00580268. [DOI] [PubMed] [Google Scholar]
- Engel A. G., Stonnington H. H. Trophic functions of the neuron. II. Denervation and regulation of muscle. Morphological effects of denervation of muscle. A quantitative ultrastructural study. Ann N Y Acad Sci. 1974 Mar 22;228(0):68–88. doi: 10.1111/j.1749-6632.1974.tb20503.x. [DOI] [PubMed] [Google Scholar]
- Furman R. E., Tanaka J. C., Mueller P., Barchi R. L. Voltage-dependent activation in purified reconstituted sodium channels from rabbit T-tubular membranes. Proc Natl Acad Sci U S A. 1986 Jan;83(2):488–492. doi: 10.1073/pnas.83.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUTMANN E. Effect of delay of innervation on recovery of muscle after nerve lesions. J Neurophysiol. 1948 Jul;11(4):279–294. doi: 10.1152/jn.1948.11.4.279. [DOI] [PubMed] [Google Scholar]
- Gillespie M. J., Gordon T., Murphy P. R. Motor units and histochemistry in rat lateral gastrocnemius and soleus muscles: evidence for dissociation of physiological and histochemical properties after reinnervation. J Neurophysiol. 1987 Apr;57(4):921–937. doi: 10.1152/jn.1987.57.4.921. [DOI] [PubMed] [Google Scholar]
- Harris J. B., Marshall M. W. Tetrodotoxin-resistant action potentials in newborn rat muscle. Nat New Biol. 1973 Jun 6;243(127):191–192. doi: 10.1038/newbio243191a0. [DOI] [PubMed] [Google Scholar]
- KATZ B., THESLEFF S. On the factors which determine the amplitude of the miniature end-plate potential. J Physiol. 1957 Jul 11;137(2):267–278. doi: 10.1113/jphysiol.1957.sp005811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lombet A., Kazazoglou T., Delpont E., Renaud J. F., Lazdunski M. Ontogenic appearance of Na+ channels characterized as high affinity binding sites for tetrodotoxin during development of the rat nervous and skeletal muscle systems. Biochem Biophys Res Commun. 1983 Feb 10;110(3):894–901. doi: 10.1016/0006-291x(83)91046-x. [DOI] [PubMed] [Google Scholar]
- Mathers D. A., Thesleff S. Studies on neurotrophic regulation of murine skeletal muscle. J Physiol. 1978 Sep;282:105–114. doi: 10.1113/jphysiol.1978.sp012451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien R. A., Ostberg A. J., Vrbová G. Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle. J Physiol. 1978 Sep;282:571–582. doi: 10.1113/jphysiol.1978.sp012482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pappone P. A. Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres. J Physiol. 1980 Sep;306:377–410. doi: 10.1113/jphysiol.1980.sp013403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogart R. B., Regan L. J. Two subtypes of sodium channel with tetrodotoxin sensitivity and insensitivity detected in denervated mammalian skeletal muscle. Brain Res. 1985 Mar 11;329(1-2):314–318. doi: 10.1016/0006-8993(85)90541-4. [DOI] [PubMed] [Google Scholar]
- Sakmann B., Brenner H. R. Change in synaptic channel gating during neuromuscular development. Nature. 1978 Nov 23;276(5686):401–402. doi: 10.1038/276401a0. [DOI] [PubMed] [Google Scholar]
- Sellin L. C., Thesleff S. Pre- and post-synaptic actions of botulinum toxin at the rat neuromuscular junction. J Physiol. 1981 Aug;317:487–495. doi: 10.1113/jphysiol.1981.sp013838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman S. J., Catterall W. A. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle. J Gen Physiol. 1982 Nov;80(5):753–768. doi: 10.1085/jgp.80.5.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman S. J., Catterall W. A. Electrical activity and cytosolic calcium regulate levels of tetrodotoxin-sensitive sodium channels in cultured rat muscle cells. Proc Natl Acad Sci U S A. 1984 Jan;81(1):262–266. doi: 10.1073/pnas.81.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman S. J., Chrivia J., Catterall W. A. Cyclic adenosine 3':5'-monophosphate and cytosolic calcium exert opposing effects on biosynthesis of tetrodotoxin-sensitive sodium channels in rat muscle cells. J Neurosci. 1985 Jun;5(6):1570–1576. doi: 10.1523/JNEUROSCI.05-06-01570.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanley E. F., Drachman D. B. Botulinum toxin blocks quantal but not non-quantal release of ACh at the neuromuscular junction. Brain Res. 1983 Feb 14;261(1):172–175. doi: 10.1016/0006-8993(83)91300-8. [DOI] [PubMed] [Google Scholar]
- Ziskind-Conhaim L., Bennett J. I. The effects of electrical inactivity and denervation on the distribution of acetylcholine receptors in developing rat muscle. Dev Biol. 1982 Mar;90(1):185–197. doi: 10.1016/0012-1606(82)90224-x. [DOI] [PubMed] [Google Scholar]
