Abstract
OBJECTIVE: To determine whether suppression of albumin synthesis contributes to the hypoalbuminemia observed in weight-losing cancer patients with evidence of an ongoing acute-phase protein response (APPR). BACKGROUND DATA: Proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin 6 (IL-6) are known to downregulate albumin synthesis and increase acute-phase protein production in isolated hepatocytes. However, whether albumin synthesis is suppressed in hypoalbuminemic cancer patients with evidence of an ongoing acute-phase response is unknown. METHODS: Albumin synthesis rates were determined in six healthy controls and in six weight-losing pancreatic cancer patients with an ongoing APPR using a flooding dose technique with [2H5]-phenylalanine. The presence of an APPR was defined as a serum C-reactive protein concentration >10 mg/L. Serum cytokines (TNF, IL-6) and soluble TNF receptors (sTNF-R 55 and 75), along with serum cortisol and insulin, were also measured in both groups. RESULTS: Cancer patients had reduced serum albumin (median 32 [range, 23-36] vs. 42 g/L [40-45]; p < 0.01) and increased serum C-reactive protein concentrations (72 [23-126] vs. <5 mg/L; p < 0.01) when compared with controls. TNF was not detected in either group. sTNF-R 55 levels were significantly elevated in the cancer patients (3.8 [1.9-8.1] vs. 1.2 pg/mL [0.9-2.2]; p < 0.01). Circulating IL-6, insulin, and cortisol concentrations were not significantly different between the groups. The intravascular albumin mass was lower (88 [56-93] vs. 133 g [105-177]; p < 0.01), but the intravascular albumin fractional synthetic rate was higher (13.9 [13.5-18.5] vs. 10.3%/d [71-11.3]; p < 0.01) in the cancer patients compared with the controls. The total intravascular albumin synthetic rate was, however, similar between the two groups (12.7 [7.7-15.7] vs. 11.7 g/d [8.5-18.7]; p NS). CONCLUSIONS: In weight-losing pancreatic cancer patients with evidence of an ongoing APPR, hypoalbuminemia is not caused by a decreased rate of albumin synthesis.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ballmer P. E., McNurlan M. A., Milne E., Heys S. D., Buchan V., Calder A. G., Garlick P. J. Measurement of albumin synthesis in humans: a new approach employing stable isotopes. Am J Physiol. 1990 Dec;259(6 Pt 1):E797–E803. doi: 10.1152/ajpendo.1990.259.6.E797. [DOI] [PubMed] [Google Scholar]
- Ballmer P. E., Ochsenbein A. F., Schütz-Hofmann S. Transcapillary escape rate of albumin positively correlates with plasma albumin concentration in acute but not in chronic inflammatory disease. Metabolism. 1994 Jun;43(6):697–705. doi: 10.1016/0026-0495(94)90117-1. [DOI] [PubMed] [Google Scholar]
- Brenner D. A., Buck M., Feitelberg S. P., Chojkier M. Tumor necrosis factor-alpha inhibits albumin gene expression in a murine model of cachexia. J Clin Invest. 1990 Jan;85(1):248–255. doi: 10.1172/JCI114419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castell J. V., Gómez-Lechón M. J., David M., Fabra R., Trullenque R., Heinrich P. C. Acute-phase response of human hepatocytes: regulation of acute-phase protein synthesis by interleukin-6. Hepatology. 1990 Nov;12(5):1179–1186. doi: 10.1002/hep.1840120517. [DOI] [PubMed] [Google Scholar]
- Costelli P., Carbó N., Tessitore L., Bagby G. J., Lopez-Soriano F. J., Argilés J. M., Baccino F. M. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest. 1993 Dec;92(6):2783–2789. doi: 10.1172/JCI116897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEBRO J. R., KORNER A. Solubility of albumin in alcohol after precipitation by trichloroacetic acid: a simplified procedure for separation of albumin. Nature. 1956 Nov 10;178(4541):1067–1067. doi: 10.1038/1781067a0. [DOI] [PubMed] [Google Scholar]
- Dahn M. S., Hsu C. J., Lange M. P., Jefferson L. S. Effects of tumor necrosis factor-alpha on glucose and albumin production in primary cultures of rat hepatocytes. Metabolism. 1994 Apr;43(4):476–480. doi: 10.1016/0026-0495(94)90080-9. [DOI] [PubMed] [Google Scholar]
- Doumas B. T., Watson W. A., Biggs H. G. Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta. 1971 Jan;31(1):87–96. doi: 10.1016/0009-8981(71)90365-2. [DOI] [PubMed] [Google Scholar]
- Falconer J. S., Fearon K. C., Plester C. E., Ross J. A., Carter D. C. Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann Surg. 1994 Apr;219(4):325–331. doi: 10.1097/00000658-199404000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falconer J. S., Fearon K. C., Ross J. A., Elton R., Wigmore S. J., Garden O. J., Carter D. C. Acute-phase protein response and survival duration of patients with pancreatic cancer. Cancer. 1995 Apr 15;75(8):2077–2082. doi: 10.1002/1097-0142(19950415)75:8<2077::aid-cncr2820750808>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
- Fearon K. C., McMillan D. C., Preston T., Winstanley F. P., Cruickshank A. M., Shenkin A. Elevated circulating interleukin-6 is associated with an acute-phase response but reduced fixed hepatic protein synthesis in patients with cancer. Ann Surg. 1991 Jan;213(1):26–31. doi: 10.1097/00000658-199101000-00005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fearon K. C. The Sir David Cuthbertson Medal Lecture 1991. The mechanisms and treatment of weight loss in cancer. Proc Nutr Soc. 1992 Aug;51(2):251–265. doi: 10.1079/pns19920036. [DOI] [PubMed] [Google Scholar]
- Fleck A., Raines G., Hawker F., Trotter J., Wallace P. I., Ledingham I. M., Calman K. C. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet. 1985 Apr 6;1(8432):781–784. doi: 10.1016/s0140-6736(85)91447-3. [DOI] [PubMed] [Google Scholar]
- Gibson J. G., Evans W. A. CLINICAL STUDIES OF THE BLOOD VOLUME. I. CLINICAL APPLICATION OF A METHOD EMPLOYING THE AZO DYE "EVANS BLUE" AND THE SPECTROPHOTOMETER. J Clin Invest. 1937 May;16(3):301–316. doi: 10.1172/JCI100859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldie A. S., Fearon K. C., Ross J. A., Barclay G. R., Jackson R. E., Grant I. S., Ramsay G., Blyth A. S., Howie J. C. Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. The Sepsis Intervention Group. JAMA. 1995 Jul 12;274(2):172–177. [PubMed] [Google Scholar]
- Kowalski-Saunders P. W., Winwood P. J., Arthur M. J., Wright R. Reversible inhibition of albumin production by rat hepatocytes maintained on a laminin-rich gel (Engelbreth-Holm-Swarm) in response to secretory products of Kupffer cells and cytokines. Hepatology. 1992 Sep;16(3):733–741. doi: 10.1002/hep.1840160320. [DOI] [PubMed] [Google Scholar]
- Maguire G. F., Lee M., Connelly P. W. Sodium dodecyl sulfate-glycerol polyacrylamide slab gel electrophoresis for the resolution of apolipoproteins. J Lipid Res. 1989 May;30(5):757–761. [PubMed] [Google Scholar]
- McMillan D. C., Preston T., Fearon K. C., Burns H. J., Slater C., Shenkin A. Protein synthesis in cancer patients with inflammatory response: investigations with [15N]glycine. Nutrition. 1994 May-Jun;10(3):232–240. [PubMed] [Google Scholar]
- O'Riordain M. G., Ross J. A., Fearon K. C., Maingay J., Farouk M., Garden O. J., Carter D. C. Insulin and counterregulatory hormones influence acute-phase protein production in human hepatocytes. Am J Physiol. 1995 Aug;269(2 Pt 1):E323–E330. doi: 10.1152/ajpendo.1995.269.2.E323. [DOI] [PubMed] [Google Scholar]
- Pietrangelo A., Shafritz D. A. Homeostatic regulation of hepatocyte nuclear transcription factor 1 expression in cultured hepatoma cells. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):182–186. doi: 10.1073/pnas.91.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeds P. J., Fjeld C. R., Jahoor F. Do the differences between the amino acid compositions of acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? J Nutr. 1994 Jun;124(6):906–910. doi: 10.1093/jn/124.6.906. [DOI] [PubMed] [Google Scholar]
- Rothschild M. A., Oratz M., Schreiber S. S. Albumin synthesis (second of two parts). N Engl J Med. 1972 Apr 13;286(15):816–821. doi: 10.1056/NEJM197204132861505. [DOI] [PubMed] [Google Scholar]
- Sirott M. N., Bajorin D. F., Wong G. Y., Tao Y., Chapman P. B., Templeton M. A., Houghton A. N. Prognostic factors in patients with metastatic malignant melanoma. A multivariate analysis. Cancer. 1993 Nov 15;72(10):3091–3098. doi: 10.1002/1097-0142(19931115)72:10<3091::aid-cncr2820721034>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
- Strassmann G., Masui Y., Chizzonite R., Fong M. Mechanisms of experimental cancer cachexia. Local involvement of IL-1 in colon-26 tumor. J Immunol. 1993 Mar 15;150(6):2341–2345. [PubMed] [Google Scholar]
- Van Zee K. J., Kohno T., Fischer E., Rock C. S., Moldawer L. L., Lowry S. F. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4845–4849. doi: 10.1073/pnas.89.11.4845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yasumoto K., Mukaida N., Harada A., Kuno K., Akiyama M., Nakashima E., Fujioka N., Mai M., Kasahara T., Fujimoto-Ouchi K. Molecular analysis of the cytokine network involved in cachexia in colon 26 adenocarcinoma-bearing mice. Cancer Res. 1995 Feb 15;55(4):921–927. [PubMed] [Google Scholar]
