Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1998 May;227(5):764–771. doi: 10.1097/00000658-199805000-00017

Effectiveness of positron emission tomography for the detection of melanoma metastases.

W D Holder Jr 1, R L White Jr 1, J H Zuger 1, E J Easton Jr 1, F L Greene 1
PMCID: PMC1191363  PMID: 9605668

Abstract

OBJECTIVE: The purpose of this study was to determine the sensitivity, specificity, and clinical utility of 18F 2-fluoro-2-deoxy-D-glucose (FDG) total-body positron emission tomography (PET) scanning for the detection of metastases in patients with malignant melanoma. SUMMARY BACKGROUND DATA: Recent preliminary reports suggest that PET using FDG may be more sensitive and specific for detection of metastatic melanoma than standard radiologic imaging studies using computed tomography (CT). PET technology is showing utility in the detection of metastatic tumors from multiple primary sites including breast, lung, lymphoma, and melanoma. However, little information is available concerning the general utility, sensitivity, and specificity of PET scanning of patients with metastatic melanoma. METHODS: One hundred three PET scans done on 76 nonrandomized patients having AJCC stage II to IV melanoma were prospectively evaluated. Patients were derived from two groups. Group 1 (63 patients) had PET, CT (chest and abdomen), and magnetic resonance imaging (MRI; brain) scans as a part of staging requirements for immunotherapy protocols. Group 2 (13 nonprotocol patients) had PET, CT, and MRI scans as in group 1, but for clinical evaluation only. PET scans were done using 12 to 20 mCi of FDG given intravenously. Results of PET scans were compared to CT scans and biopsy or cytology results. RESULTS: PET scanning for the detection of melanoma metastases had a sensitivity of 94.2% and a specificity of 83.3% compared to 55.3% and 84.4%, respectively, for CT scanning. Factors that produced false-positive PET scans were papillary carcinoma of the thyroid (1), bronchogenic carcinoma (1), inflamed epidermal cyst (1), Warthin's tumor of the parotid gland (1), surgical wound inflammation (2), leiomyoma of the uterus (1), suture granuloma (1), and endometriosis (1). The four false-negative scans were thought to be due to smaller (<0.3 to 0.5 cm) and diffuse areas of melanoma without a mass effect. CONCLUSIONS: PET scanning is extremely sensitive (94.2%) and very specific (83.3%) for identifying metastatic melanoma, particularly in soft tissues, lymph nodes, and the liver. A number of second primary or metastatic tumors and an inflammatory response can also be localized by PET. This observation mandates a close clinical correlation with positive PET and emphasizes the importance of establishing a tissue diagnosis. False-negative scans in the presence of metastases are rare (4% of scans). Metastases < or =5 mm in diameter may not image well. PET is superior to CT in detecting melanoma metastases and has a role as a primary strategy in the staging of melanoma.

Full text

PDF
764

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avril N., Dose J., Jänicke F., Ziegler S., Römer W., Weber W., Herz M., Nathrath W., Graeff H., Schwaiger M. Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-D-glucose. J Natl Cancer Inst. 1996 Sep 4;88(17):1204–1209. doi: 10.1093/jnci/88.17.1204. [DOI] [PubMed] [Google Scholar]
  2. Bailet J. W., Abemayor E., Jabour B. A., Hawkins R. A., Ho C., Ward P. H. Positron emission tomography: a new, precise imaging modality for detection of primary head and neck tumors and assessment of cervical adenopathy. Laryngoscope. 1992 Mar;102(3):281–288. doi: 10.1288/00005537-199203000-00010. [DOI] [PubMed] [Google Scholar]
  3. Balch C. M., Soong S. J., Murad T. M., Ingalls A. L., Maddox W. A. A multifactorial analysis of melanoma: III. Prognostic factors in melanoma patients with lymph node metastases (stage II). Ann Surg. 1981 Mar;193(3):377–388. doi: 10.1097/00000658-198103000-00023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brodack J. W., Dence C. S., Kilbourn M. R., Welch M. J. Robotic production of 2-deoxy-2-[18F]fluoro-D-glucose: a routine method of synthesis using tetrabutylammonium [18F]fluoride. Int J Rad Appl Instrum A. 1988;39(7):699–703. doi: 10.1016/0883-2889(88)90060-3. [DOI] [PubMed] [Google Scholar]
  5. Damian D. L., Fulham M. J., Thompson E., Thompson J. F. Positron emission tomography in the detection and management of metastatic melanoma. Melanoma Res. 1996 Aug;6(4):325–329. doi: 10.1097/00008390-199608000-00008. [DOI] [PubMed] [Google Scholar]
  6. Gritters L. S., Francis I. R., Zasadny K. R., Wahl R. L. Initial assessment of positron emission tomography using 2-fluorine-18-fluoro-2-deoxy-D-glucose in the imaging of malignant melanoma. J Nucl Med. 1993 Sep;34(9):1420–1427. [PubMed] [Google Scholar]
  7. Gupta N. C., Frick M. P. Clinical applications of positron-emission tomography in cancer. CA Cancer J Clin. 1993 Jul-Aug;43(4):235–254. doi: 10.3322/canjclin.43.4.235. [DOI] [PubMed] [Google Scholar]
  8. Inokuma T., Tamaki N., Torizuka T., Magata Y., Fujii M., Yonekura Y., Kajiyama T., Ohshio G., Imamura M., Konishi J. Evaluation of pancreatic tumors with positron emission tomography and F-18 fluorodeoxyglucose: comparison with CT and US. Radiology. 1995 May;195(2):345–352. doi: 10.1148/radiology.195.2.7724751. [DOI] [PubMed] [Google Scholar]
  9. Karlan B. Y., Hawkins R., Hoh C., Lee M., Tse N., Cane P., Glaspy J. Whole-body positron emission tomography with 2-[18F]-fluoro-2-deoxy-D-glucose can detect recurrent ovarian carcinoma. Gynecol Oncol. 1993 Nov;51(2):175–181. doi: 10.1006/gyno.1993.1268. [DOI] [PubMed] [Google Scholar]
  10. Lapela M., Leskinen S., Minn H. R., Lindholm P., Klemi P. J., Söderström K. O., Bergman J., Haaparanta M., Ruotsalainen U., Solin O. Increased glucose metabolism in untreated non-Hodgkin's lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxyglucose. Blood. 1995 Nov 1;86(9):3522–3527. [PubMed] [Google Scholar]
  11. Larson S. M., Weiden P. L., Grunbaum Z., Kaplan H. G., Rasey J. S., Graham M. M., Sale G. E., Harp G. D., Williams D. L. Positron imaging feasibility studies. II: Characteristics of 2-deoxyglucose uptake in rodent and canine neoplasms: concise communication. J Nucl Med. 1981 Oct;22(10):875–879. [PubMed] [Google Scholar]
  12. Okazumi S., Isono K., Enomoto K., Kikuchi T., Ozaki M., Yamamoto H., Hayashi H., Asano T., Ryu M. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med. 1992 Mar;33(3):333–339. [PubMed] [Google Scholar]
  13. Parker S. L., Tong T., Bolden S., Wingo P. A. Cancer statistics, 1996. CA Cancer J Clin. 1996 Jan-Feb;46(1):5–27. doi: 10.3322/canjclin.46.1.5. [DOI] [PubMed] [Google Scholar]
  14. Primack S. L., Lee K. S., Logan P. M., Miller R. R., Müller N. L. Bronchogenic carcinoma: utility of CT in the evaluation of patients with suspected lesions. Radiology. 1994 Dec;193(3):795–800. doi: 10.1148/radiology.193.3.7972827. [DOI] [PubMed] [Google Scholar]
  15. Reintgen D., Balch C. M., Kirkwood J., Ross M. Recent advances in the care of the patient with malignant melanoma. Ann Surg. 1997 Jan;225(1):1–14. doi: 10.1097/00000658-199701000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sasaki M., Ichiya Y., Kuwabara Y., Akashi Y., Yoshida T., Fukumura T., Murayama S., Ishida T., Sugio K., Masuda K. The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer: a comparative study with X-ray computed tomography. Eur J Nucl Med. 1996 Jul;23(7):741–747. doi: 10.1007/BF00843701. [DOI] [PubMed] [Google Scholar]
  17. Schiepers C., Penninckx F., De Vadder N., Merckx E., Mortelmans L., Bormans G., Marchal G., Filez L., Aerts R. Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging. Eur J Surg Oncol. 1995 Oct;21(5):517–522. doi: 10.1016/s0748-7983(95)97046-0. [DOI] [PubMed] [Google Scholar]
  18. Scott W. J., Gobar L. S., Terry J. D., Dewan N. A., Sunderland J. J. Mediastinal lymph node staging of non-small-cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J Thorac Cardiovasc Surg. 1996 Mar;111(3):642–648. doi: 10.1016/s0022-5223(96)70317-3. [DOI] [PubMed] [Google Scholar]
  19. Scott W. J., Schwabe J. L., Gupta N. C., Dewan N. A., Reeb S. D., Sugimoto J. T. Positron emission tomography of lung tumors and mediastinal lymph nodes using [18F]fluorodeoxyglucose. The Members of the PET-Lung Tumor Study Group. Ann Thorac Surg. 1994 Sep;58(3):698–703. doi: 10.1016/0003-4975(94)90730-7. [DOI] [PubMed] [Google Scholar]
  20. Som P., Atkins H. L., Bandoypadhyay D., Fowler J. S., MacGregor R. R., Matsui K., Oster Z. H., Sacker D. F., Shiue C. Y., Turner H. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980 Jul;21(7):670–675. [PubMed] [Google Scholar]
  21. Steinert H. C., Huch Böni R. A., Buck A., Böni R., Berthold T., Marincek B., Burg G., von Schulthess G. K. Malignant melanoma: staging with whole-body positron emission tomography and 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology. 1995 Jun;195(3):705–709. doi: 10.1148/radiology.195.3.7753998. [DOI] [PubMed] [Google Scholar]
  22. Vitola J. V., Delbeke D., Sandler M. P., Campbell M. G., Powers T. A., Wright J. K., Chapman W. C., Pinson C. W. Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Am J Surg. 1996 Jan;171(1):21–26. doi: 10.1016/S0002-9610(99)80067-1. [DOI] [PubMed] [Google Scholar]
  23. Wagner J. D., Schauwecker D., Hutchins G., Coleman J. J., 3rd Initial assessment of positron emission tomography for detection of nonpalpable regional lymphatic metastases in melanoma. J Surg Oncol. 1997 Mar;64(3):181–189. doi: 10.1002/(sici)1096-9098(199703)64:3<181::aid-jso2>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  24. Wagner J. D., Schauwecker D., Hutchins G., Coleman J. J., 3rd Initial assessment of positron emission tomography for detection of nonpalpable regional lymphatic metastases in melanoma. J Surg Oncol. 1997 Mar;64(3):181–189. doi: 10.1002/(sici)1096-9098(199703)64:3<181::aid-jso2>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  25. White P. G., Adams H., Crane M. D., Butchart E. G. Preoperative staging of carcinoma of the bronchus: can computed tomographic scanning reliably identify stage III tumours? Thorax. 1994 Oct;49(10):951–957. doi: 10.1136/thx.49.10.951. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES