Abstract
OBJECTIVE: To test the authors' hypothesis of the causal mechanism(s) of postoperative tetany in patients with Graves disease. SUMMARY BACKGROUND DATA: Previous studies by the authors suggested that postoperative tetany in patients with Graves disease occurs during the period of bone restoration and resulted from continuation of a calcium flux into bone concomitant with transient hypoparathyroidism induced by surgery. PATIENTS AND METHODS: A prospective study was carried out to investigate sequential changes in serum levels of intact parathyroid hormone (iPTH), calcium and other electrolytes, 25-hydroxyvitamin D (25OHD), 1,25-dihydroxyvitamin D (1,25(OH)2D), and bone metabolic markers in 109 consecutive patients with Graves disease who underwent subtotal thyroidectomy. RESULTS: Preoperative serum iPTH levels negatively correlated with ionized calcium levels and positively correlated with 1,25(OH)2D or 1,25(OH)2D/25OHD. After the operation, there was a significant decline in levels of ionized calcium, magnesium, and iPTH. Serum iPTH was not detected in 15 patients after surgery. Four of these 15 patients, and 1 patient whose iPTH level was below normal, developed tetany. Preoperative serum ionized calcium levels were significantly lower, and iPTH levels were higher, in the 5 patients with tetany than in the 11 patients who did not develop tetany despite undetectable iPTH levels. The tetany group had significantly lower serum 25OHD levels and higher 1,25(OH)2D levels, and had increased 1,25(OH)2D/25OHD as an index of the renal 25OHD-1-hydroxylase activity than those in the nontetany group. These results suggest that patients with a high serum level of iPTH as a result of low serum calcium levels (secondary hyperparathyroidism) are susceptible to tetany under conditions of hypoparathyroid function after surgery. CONCLUSIONS: Postoperative tetany occurs in patients with secondary hyperparathyroidism caused by a relative deficiency in calcium and vitamin D because of their increased demand for bone restoration after preoperative medical therapy concomitant with transient hypoparathyroidism after surgery. Calcium and vitamin D supplements may be recommended before and/or after surgery for patients in whom postoperative tetany is expected to develop.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Austin L. A., Heath H., 3rd Calcitonin: physiology and pathophysiology. N Engl J Med. 1981 Jan 29;304(5):269–278. doi: 10.1056/NEJM198101293040505. [DOI] [PubMed] [Google Scholar]
- Baxter J. D., Bondy P. K. Hypercalcemia of thyrotoxicosis. Ann Intern Med. 1966 Sep;65(3):429–442. doi: 10.7326/0003-4819-65-3-429. [DOI] [PubMed] [Google Scholar]
- Bell N. H., Epstein S., Shary J., Greene V., Oexmann M. J., Shaw S. Evidence of a probable role for 25-hydroxyvitamin D in the regulation of human calcium metabolism. J Bone Miner Res. 1988 Oct;3(5):489–495. doi: 10.1002/jbmr.5650030503. [DOI] [PubMed] [Google Scholar]
- Boass A., Toverud S. U., McCain T. A., Pike J. W., Haussler M. R. Elevated serum levels of 1alpha, 25-dihydroxycholecalciferol in lactating rats. Nature. 1977 Jun 16;267(5612):630–632. doi: 10.1038/267630a0. [DOI] [PubMed] [Google Scholar]
- Bouillon R., Muls E., De Moor P. Influence of thyroid function on the serum concentration of 1,25-dihydroxyvitamin D3. J Clin Endocrinol Metab. 1980 Oct;51(4):793–797. doi: 10.1210/jcem-51-4-793. [DOI] [PubMed] [Google Scholar]
- Chesney R. W., Zimmerman J., Hamstra A., DeLuca H. F., Mazees R. B. Vitamin D metabolite concentrations in vitamin D deficiency. Are calcitriol levels normal. Am J Dis Child. 1981 Nov;135(11):1025–1028. doi: 10.1001/archpedi.1981.02130350029010. [DOI] [PubMed] [Google Scholar]
- Clements M. R., Johnson L., Fraser D. R. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature. 1987 Jan 1;325(6099):62–65. doi: 10.1038/325062a0. [DOI] [PubMed] [Google Scholar]
- Escobar-Jimenez F., Torres E. V., Picon A., Megias M., Moll J. Hypocalcaemia and thyroid surgery. Lancet. 1977 Aug 20;2(8034):402–402. doi: 10.1016/s0140-6736(77)90328-2. [DOI] [PubMed] [Google Scholar]
- Garabedian M., Holick M. F., Deluca H. F., Boyle I. T. Control of 25-hydroxycholecalciferol metabolism by parathyroid glands. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1673–1676. doi: 10.1073/pnas.69.7.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gascon-Barré M., D'Amour P., Dufresne L., Perreault J. P. Interrelationships between circulating vitamin D metabolites in normocalciuric and hypercalciuric renal stone formers. Ann Nutr Metab. 1985;29(5):289–296. doi: 10.1159/000176984. [DOI] [PubMed] [Google Scholar]
- Haddad J. G., Chyu K. J. Competitive protein-binding radioassay for 25-hydroxycholecalciferol. J Clin Endocrinol Metab. 1971 Dec;33(6):992–995. doi: 10.1210/jcem-33-6-992. [DOI] [PubMed] [Google Scholar]
- Heaney R. P., Barger-Lux M. J., Dowell M. S., Chen T. C., Holick M. F. Calcium absorptive effects of vitamin D and its major metabolites. J Clin Endocrinol Metab. 1997 Dec;82(12):4111–4116. doi: 10.1210/jcem.82.12.4412. [DOI] [PubMed] [Google Scholar]
- Hughes M. R., Baylink D. J., Jones P. G., Haussler M. R. Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1 alpha, 25-dihydroxyvitamin D2/D3. J Clin Invest. 1976 Jul;58(1):61–70. doi: 10.1172/JCI108459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones R. M., Davidson C. M. Thyrotoxicosis and the hungry bone syndrome: a cause of postoperative tetany. J R Coll Surg Edinb. 1987 Feb;32(1):24–28. [PubMed] [Google Scholar]
- Krølner B., Jørgensen J. V., Nielsen S. P. Spinal bone mineral content in myxoedema and thyrotoxicosis. Effects of thyroid hormone(s) and antithyroid treatment. Clin Endocrinol (Oxf) 1983 May;18(5):439–446. doi: 10.1111/j.1365-2265.1983.tb02873.x. [DOI] [PubMed] [Google Scholar]
- Laitinen O. Hypocalcaemia after thyroidectomy. Lancet. 1976 Oct 16;2(7990):859–860. doi: 10.1016/s0140-6736(76)91255-1. [DOI] [PubMed] [Google Scholar]
- Lobaugh B., Boass A., Garner S. C., Toverud S. U. Intensity of lactation modulates renal 1 alpha-hydroxylase and serum 1,25(OH)2D in rats. Am J Physiol. 1992 Jun;262(6 Pt 1):E840–E844. doi: 10.1152/ajpendo.1992.262.6.E840. [DOI] [PubMed] [Google Scholar]
- MacFarlane I. A., Mawer E. B., Berry J., Hann J. Vitamin D metabolism in hyperthyroidism. Clin Endocrinol (Oxf) 1982 Jul 1;17(1):51–59. doi: 10.1111/j.1365-2265.1982.tb02633.x. [DOI] [PubMed] [Google Scholar]
- McHenry C. R., Speroff T., Wentworth D., Murphy T. Risk factors for postthyroidectomy hypocalcemia. Surgery. 1994 Oct;116(4):641–648. [PubMed] [Google Scholar]
- Michie W., Duncan T., Hamer-Hodges D. W., Bewsher P. D., Stowers J. M., Pegg C. A., Hems G., Hedley A. J. Mechanism of hypocalcaemia after thyroidectomy for thyrotoxicosis. Lancet. 1971 Mar 13;1(7698):508–514. doi: 10.1016/s0140-6736(71)91122-6. [DOI] [PubMed] [Google Scholar]
- Mosekilde L., Lund B., Sorensen O. H., Christensen M. S., Melsen F. Serum-25-hydroxycholecalciferol in hyperthyroidism. Lancet. 1977 Apr 9;1(8015):806–807. doi: 10.1016/s0140-6736(77)92995-6. [DOI] [PubMed] [Google Scholar]
- Mosekilde L., Melsen F., Bagger J. P., Myhre-Jensen O., Schwartz Sorensen N. Bone changes in hyperthyroidism: interrelationships between bone morphometry, thyroid function and calcium-phosphorus metabolism. Acta Endocrinol (Copenh) 1977 Jul;85(3):515–525. doi: 10.1530/acta.0.0850515. [DOI] [PubMed] [Google Scholar]
- Murakami T., Noguchi S., Murakami N., Kato R., Ohta Y. [The mechanism of postoperative tetany in Graves' disease]. Nihon Naibunpi Gakkai Zasshi. 1989 Aug 20;65(8):771–780. doi: 10.1507/endocrine1927.65.8_771. [DOI] [PubMed] [Google Scholar]
- Ogawa Y. Mechanism of postoperative tetany in patients with hyperthyroidism. Fukushima J Med Sci. 1978;25(3-4):65–81. [PubMed] [Google Scholar]
- Rader J. I., Baylink D. J., Hughes M. R., Safilian E. F., Haussler M. R. Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. Am J Physiol. 1979 Feb;236(2):E118–E122. doi: 10.1152/ajpendo.1979.236.2.E118. [DOI] [PubMed] [Google Scholar]
- Reinhardt T. A., Horst R. L., Orf J. W., Hollis B. W. A microassay for 1,25-dihydroxyvitamin D not requiring high performance liquid chromatography: application to clinical studies. J Clin Endocrinol Metab. 1984 Jan;58(1):91–98. doi: 10.1210/jcem-58-1-91. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Ogata E., Eto S., Fujimoto Y., Fukumitsu M. Transient fall in blood calcium level following thyroid operations. Endocrinol Jpn. 1968 Jun;15(2):251–253. doi: 10.1507/endocrj1954.15.251. [DOI] [PubMed] [Google Scholar]
- Vieth R., Fraser D., Kooh S. W. Low dietary calcium reduces 25-hydroxycholecalciferol in plasma of rats. J Nutr. 1987 May;117(5):914–918. doi: 10.1093/jn/117.5.914. [DOI] [PubMed] [Google Scholar]
- WADE J. S., GOODALL P., DEANE L., DAUNCEY T. M., FOURMAN P. THE COURSE OF PARTIAL PARATHYROID INSUFFICIENCY AFTER THYROIDECTOMY. Br J Surg. 1965 Jul;52:497–503. doi: 10.1002/bjs.1800520705. [DOI] [PubMed] [Google Scholar]
- Wilkin T. J., Isles T. E., Paterson C. R., Crooks J., Beck J. Post-thyroidectomy hypocalcaemia: A feature of the operation or the thyroid disorder? Lancet. 1977 Mar 19;1(8012):621–623. doi: 10.1016/s0140-6736(77)92057-8. [DOI] [PubMed] [Google Scholar]
- Wingert D. J., Friesen S. R., Iliopoulos J. I., Pierce G. E., Thomas J. H., Hermreck A. S. Post-thyroidectomy hypocalcemia. Incidence and risk factors. Am J Surg. 1986 Dec;152(6):606–610. doi: 10.1016/0002-9610(86)90435-6. [DOI] [PubMed] [Google Scholar]
- Yamashita H., Noguchi S., Tahara K., Watanabe S., Uchino S., Kawamoto H., Toda M., Murakami N. Postoperative tetany in patients with Graves' disease: a risk factor analysis. Clin Endocrinol (Oxf) 1997 Jul;47(1):71–77. doi: 10.1046/j.1365-2265.1997.2201033.x. [DOI] [PubMed] [Google Scholar]