Skip to main content
Chinese Journal of Burns logoLink to Chinese Journal of Burns
. 2021 Mar 20;37(3):257–262. [Article in Chinese] doi: 10.3760/cma.j.cn501120-20200225-00091

金黄色葡萄球菌超抗原与人耳部瘢痕疙瘩形成的相关性研究

Correlation study of Staphylococcus aureus superantigens and formation of human ear keloid

蔡 云鹏 1,2, 吴 晓琰 1, 陈 晓栋 1,*
PMCID: PMC11917246  PMID: 33706430

Abstract

目的

探讨金黄色葡萄球菌超抗原与人耳部瘢痕疙瘩形成的相关性。

方法

采用回顾性病例对照研究方法。2017年6月—2018年3月, 取南通大学附属医院收治的10例(女9例、男1例, 年龄19~59岁)耳部瘢痕疙瘩患者行耳部瘢痕疙瘩核心切除术后弃用瘢痕组织及3例(均为女性, 年龄20~24岁)色素痣患者手术后弃用正常皮肤组织。取耳部瘢痕疙瘩表面分泌物, 培养细菌并进行鉴定。取瘢痕疙瘩和正常皮肤组织, 采用蛋白质印迹法检测金黄色葡萄球菌肠毒素A+肠毒素B+毒性休克综合征毒素1(TSST-1)的蛋白表达, 并根据蛋白表达情况将瘢痕疙瘩分为超抗原阳性组和超抗原阴性组。蛋白质印迹法检测2组瘢痕疙瘩T细胞受体(TCR)Vβ蛋白表达。Masson、苏木精-伊红(HE)染色观察2组瘢痕疙瘩真皮内胶原纤维形成和炎症细胞浸润情况。酶联免疫吸附测定法检测超抗原阳性瘢痕疙瘩中金黄色葡萄球菌肠毒素A、肠毒素B、TSST-1表达。对数据行配对样本t检验。

结果

耳部瘢痕疙瘩表面分泌物培养出细菌, 优势菌培养24 h可见细菌周围出现溶血现象, 菌落呈白色或金黄色, 鉴定为金黄色葡萄球菌。3例患者正常皮肤肠毒素A+肠毒素B+TSST-1蛋白表达阴性, 蛋白表达量为0.267±0.016。4例患者瘢痕疙瘩金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1蛋白表达阳性, 蛋白表达量为0.472±0.016, 纳入超抗原阳性组;6例患者瘢痕疙瘩金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1蛋白表达阴性, 蛋白表达量为0.255±0.004, 纳入超抗原阴性组。超抗原阳性组瘢痕疙瘩金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1蛋白表达量明显高于超抗原阴性组瘢痕疙瘩和正常皮肤(t=15.22、8.63, P < 0.01)。超抗原阳性组瘢痕疙瘩TCR Vβ蛋白表达量为0.389±0.023, 明显高于超抗原阴性组的0.169±0.014(t=8.62, P < 0.01)。Masson染色显示, 2组瘢痕疙瘩真皮内均见大量胶原纤维增生。HE染色显示, 超抗原阴性组瘢痕疙瘩真皮可见血管周围少量炎症细胞浸润, 超抗原阳性组瘢痕疙瘩血管周围可见大量炎症细胞浸润。4例超抗原阳性瘢痕疙瘩患者中金黄色葡萄球菌肠毒素A阳性2例、金黄色葡萄球菌肠毒素B阳性2例, 其中1例患者检测出肠毒素A和肠毒素B双阳性, 未有患者检出金黄色葡萄球菌TSST-1。

结论

金黄色葡萄球菌分泌的超抗原是耳部瘢痕疙瘩众多发病原因中的一种, 可能与金黄色葡萄球菌超抗原激活瘢痕疙瘩信号通路有关。

Keywords: 葡萄球菌, 金黄色; 瘢痕疙瘩; 超抗原; 耳; 肠毒素A; 肠毒素B; 毒性休克综合征毒素1


瘢痕疙瘩是人体皮肤受到创伤或炎症后异常修复形成的新生物, 好发于有色人种, 亚裔人群的发生率约为0.15%, 病情严重时会影响患者的生活质量, 发病机制至今尚未完全阐明[1-4]。有学者对身体不同部位的瘢痕疙瘩进行系统分析得出, 不同部位的瘢痕疙瘩形态学特点各有不同。有学者提出, 皮肤张力过高会导致瘢痕疙瘩, 该观点在后续的研究中得到证实[5-7], 但也有其他研究者认为瘢痕疙瘩的形成与遗传因素等有关[8-13]。耳部局部张力小, 在某些情况下也会产生瘢痕疙瘩, 所以在不考虑高张力的情况下, 是不是有其他的诱发因素介入, 引起皮肤Fb大量增殖和ECM大量合成, 并逐渐形成耳部瘢痕疙瘩。临床就诊的耳部瘢痕疙瘩患者中, 以打耳洞后增生多见[14], 病程中耳朵局部会出现红肿热痛或流脓, 因此推测耳部瘢痕疙瘩的形成主要与局部感染和/或异物刺激有关[15-16]。虽然耳部瘢痕疙瘩形成还有其他的原因, 但感染导致Fb增殖和ECM合成可能是其形成的主要原因。

当耳部感染金黄色葡萄球菌时, 金黄色葡萄球菌超抗原是否与主要组织相容性复合体Ⅱ类分子(MHCⅡ)-T细胞受体(TCR)Vβ区形成特异性的结合, 激活T细胞, 使其克隆、增殖并激活体内的各种炎症细胞和免疫细胞, 继而释放各种细胞因子及炎症介质, 最终形成耳部瘢痕疙瘩, 还有待研究。本研究旨在探讨金黄色葡萄球菌超抗原在耳部瘢痕疙瘩形成中的作用及其机制。

1. 资料与方法

本回顾性病例对照研究符合《赫尔辛基宣言》的基本要求, 所有患者均对研究知情同意。

1.1. 组织标本及主要试剂与仪器来源

耳部瘢痕疙瘩为2017年6月—2018年3月于南通大学附属医院行耳部瘢痕疙瘩核心切除术的10例患者的弃用瘢痕组织。患者中女9例, 均有打耳洞史, 其中5例为瘢痕疙瘩切除术后复发;男1例, 有冻疮史;年龄19~59岁, 中位年龄为29岁。患者术后均行病理检查并诊断为耳部瘢痕疙瘩, 排除耳部其他疾病。正常皮肤为同一时期南通大学附属医院收治的3例女性色素痣患者手术后弃用的正常皮肤组织, 患者年龄20~24岁。

金黄色葡萄球菌标准品ATCC 25923购自上海舜友生物技术有限公司。全蛋白提取试剂盒购自江苏凯基生物技术股份有限公司, 兔抗人重组GAPDH单克隆抗体、兔抗人抗金黄色葡萄球菌肠毒素A+肠毒素B+毒性休克综合征毒素1(TSST-1)多克隆抗体购自艾博抗(上海)贸易有限公司, 人金黄色葡萄球菌肠毒素A、肠毒素B以及TSST-1 ELISA检测试剂盒购自江苏晶美生物科技有限公司, 兔抗人TCR Vβ多克隆抗体、辣根过氧化物酶标记的山羊抗兔IgG多克隆抗体购自爱必信(上海)生物科技有限公司。多功能酶标仪购自上海赛默飞公司, 电泳及转膜系统购自美国伯乐公司, 凝胶成像系统购自上海天能科技有限公司, BX51型光学显微镜购自日本奥林巴斯公司, 麦康凯平板购自郑州安图绿科生物工程有限公司, 转种血平板购自湖南比克曼生物科技有限公司, ATB1525 Expression型微生物鉴定和药敏分析仪购自法国生物梅里埃股份有限公司。

1.2. 耳部瘢痕疙瘩细菌培养及鉴定

耳部瘢痕疙瘩患者入院后取耳部瘢痕疙瘩表面分泌物, 有耳洞眼处重点采集, 接种至麦康凯平板及转种血平板, 于37 ℃、体积分数为5%的二氧化碳培养箱中恒温孵育24 h。挑取优势生长菌落再次孵育24 h, 使用金黄色葡萄球菌标准品ATCC 25923进行鉴定。

1.3. 组织上清液提取

取耳部瘢痕疙瘩及正常皮肤组织, 剪或细小碎块, 放入EP管中, 加入1 mL裂解液, 冰上充分匀浆。于4 ℃, 以离心半径15 cm, 12 000 r/min高速离心15 min。吸取上清液至新的EP管, 二喹啉甲酸法测定上清液中的蛋白浓度, -80 ℃超低温冰箱保存。

1.4. 蛋白质印迹法检测

1.4.1. 耳部瘢痕疙瘩与正常皮肤金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1蛋白表达

1.3中保存的耳部瘢痕疙瘩及正常皮肤组织上清液, 行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳后, 转聚偏二氟乙烯膜后, 加入兔抗人金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1多克隆一抗(稀释比为1∶500), 兔抗人重组GAPDH单克隆一抗(稀释比为1∶10 000), 4 ℃孵育过夜, 加入辣根过氧化物酶标记的山羊抗兔IgG多克隆二抗(稀释比为1∶5 000), 室温孵育2 h。化学发光显影、曝光, 用图像分析软件Image J(美国国立卫生研究院)分析各条带灰度值, 以GAPDH为内参照, 计算目的蛋白的相对表达量, 根据其蛋白表达情况, 将耳部瘢痕疙瘩分为超抗原阳性组和超抗原阴性组。

1.4.2. 超抗原阳性组、超抗原阴性组瘢痕疙瘩TCR Vβ蛋白表达

取2组瘢痕疙瘩上清液, 同1.4.1  方法检测TCR Vβ蛋白表达。加入兔抗人TCR Vβ多克隆一抗(稀释比为1∶1 000)、兔抗人重组GAPDH单克隆一抗(稀释比为1∶10 000), 4 ℃孵育过夜, 加入辣根过氧化物酶标记的山羊抗兔IgG多克隆二抗(稀释比为1∶5 000), 室温孵育2 h。

1.5. 组织病理学检测

取2组耳部瘢痕疙瘩, 常规石蜡包埋切片, 行Masson染色及HE染色, 切片厚度分别为3、4 mm, 分别于20、40倍光学显微镜下观察真皮胶原纤维形成和炎症细胞浸润情况。

1.6. 超抗原阳性瘢痕疙瘩超抗原识别

采用ELISA法进行检测。取1.3中提取的超抗原阳性瘢痕疙瘩上清液, 按照人金黄色葡萄球菌肠毒素A、肠毒素B、TSST-1 ELISA检测试剂盒说明书设置标准品孔和样本孔, 封板膜封盖样板, 37 ℃恒温孵育1 h, 加入显色液, 37 ℃避光显色15 min后加入终止液。酶标仪测定450 nm波长下各孔的吸光度值, 以此表示超抗原的表达。

1.7. 统计学处理

采用GrapPad Prism 6统计软件进行分析。计量资料数据均符合正态分布, 以x±s表示, 行配对样本t检验, P < 0.05为差异有统计学意义。

2. 结果

2.1. 细菌培养及鉴定

耳部瘢痕疙瘩表面分泌物培养24 h有以下情形:无菌生长、少量杂菌生长、优势菌生长。优势菌培养24 h可见细菌周围出现溶血现象, 且菌落呈白色或者金黄色, 使用金黄色葡萄球菌标准品ATCC 25923鉴定为金黄色葡萄球菌。见图 1

图 1.

图 1

优势菌培养24 h见细菌周围出现溶血现象, 菌落呈白色

2.2. 耳部瘢痕疙瘩与正常皮肤金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1蛋白表达

3例患者正常皮肤金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1蛋白表达阴性, 蛋白表达量为0.267±0.016。4例患者瘢痕疙瘩金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1蛋白表达阳性, 蛋白表达量为0.472±0.016, 纳入超抗原阳性组;6例患者瘢痕疙瘩金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1蛋白表达阴性, 蛋白表达量为0.255±0.004, 纳入超抗原阴性组。超抗原阳性组瘢痕疙瘩金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1蛋白表达量明显高于超抗原阴性组瘢痕疙瘩和正常皮肤(t=15.22、8.63, P < 0.001)。见图 2

图 2.

蛋白质印迹法检测耳部瘢痕疙瘩与正常皮肤金黄色葡萄球菌肠毒素A+肠毒素B+TSST-1蛋白表达

注:TSST-1为毒性休克综合征毒素1, GAPDH为3-磷酸甘油醛脱氢酶;1~10为瘢痕疙瘩, 11~13为正常皮肤

图 2

2.3. 超抗原阳性组、超抗原阴性组瘢痕疙瘩中的TCR Vβ蛋白表达

超抗原阳性组瘢痕疙瘩TCR Vβ蛋白表达量为0.389±0.023, 明显高于超抗原阴性组的0.169±0.014(t=8.62, P < 0.001)。见图 3

图 3.

蛋白质印迹法检测超抗原阳性和阴性组耳部瘢痕疙瘩TCR Vβ蛋白表达

注:TCR为T细胞受体, GAPDH为3-磷酸甘油醛脱氢酶;1、2、4、7为超抗原阳性组, 3、5、6、8、9、10为超抗原阴性组

图 3

2.4. 组织病理学

Masson染色显示, 超抗原阴性组与超抗原阳性组瘢痕疙瘩真皮内见大量胶原纤维增生。见图 4

图 4.

图 4

超抗原阳性和阴性组耳部瘢痕疙瘩组织病理学观察Masson×20, 图中标尺为100 μm。4A. 超抗原阴性组真皮内可见大量胶原纤维增生;4B.超抗原阳性组真皮内胶原纤维增生与图 4A相近

HE染色显示, 超抗原阴性组瘢痕疙瘩真皮可见胶原增生及血管周围少量炎症细胞浸润, 超抗原阳性组瘢痕疙瘩血管周围可见大量炎症细胞浸润。见图 5

图 5.

图 5

超抗原阳性和阴性组耳部瘢痕疙瘩组织病理学观察苏木精-伊红×40, 图中标尺为100 μm。5A.超抗原阴性组血管周围少量炎症细胞浸润;5B.超抗原阳性组血管周围炎症细胞浸润明显多于图 5A

2.5. 超抗原识别

4例超抗原阳性瘢痕疙瘩患者中金黄色葡萄球菌肠毒素A阳性2例、金黄色葡萄球菌肠毒素B阳性2例, 其中1例患者检测出金黄色葡萄球菌肠毒素A和肠毒素B双阳性, 未有患者检出TSST-1。

3. 讨论

研究表明, 感染与细菌菌群失调有联系, 而耳部感染常常与皮肤表面的金黄色葡萄球菌有联系[17-18]。许多疾病常由金黄色葡萄球菌侵袭所致, 金黄色葡萄球菌产生的超抗原除经抗原呈递细胞处理后产生免疫应答外, 还可以直接结合在MHCⅡ及TCR Vβ特异性的结合沟槽外, 以极低浓度刺激机体产生免疫应答, 而免疫细胞产生各种细胞因子、炎症介质, 引发炎症风暴。因此, 金黄色葡萄球菌超抗原在一些炎症性疾病或者免疫性疾病的发生发展中起着十分重要的生物学作用[19-20]

本研究结果显示, 耳部瘢痕疙瘩表面分泌物中有金黄色葡萄球菌存在, 部分耳部瘢痕疙瘩金黄色葡萄球菌超抗原呈阳性, 部分呈阴性, 且正常皮肤超抗原阴性, 说明金黄色葡萄球菌超抗原可能与瘢痕疙瘩形成有一定关系, 但可能还有其他原因导致瘢痕疙瘩形成。本研究进一步比较了超抗原阳性和阴性瘢痕疙瘩中TCR Vβ蛋白表达情况, 结果显示超抗原阳性瘢痕疙瘩TCR Vβ蛋白表达明显高于超抗原阴性瘢痕疙瘩。HE染色显示, 超抗原阳性瘢痕疙瘩真皮血管周围有大量炎症细胞浸润, 明显多于超抗原阴性瘢痕疙瘩。上述结果进一步证实金黄色葡萄球菌超抗原在耳部瘢痕疙瘩发生中发挥一定的生物学作用。

金黄色葡萄球菌超抗原是一组分子量27×103~30×103结构相关的热稳定蛋白, 根据其氨基酸的不同可分为金黄色葡萄球菌肠毒素和TSST-1等血清型[21]。目前已观察到的金黄色葡萄球菌超抗原超过23种, 其中肠毒素A、肠毒素B、TSST-1是目前临床较常见, 且研究相对较多的超抗原, 本研究结果与此一致, 4例超抗原阳性瘢痕疙瘩患者中肠毒素A阳性、肠毒素B阳性分别有2例。因此本研究团队前期以此为突破口, 并以金黄色葡萄球菌、超抗原、TCR、瘢痕疙瘩各种信号通路为关键词, 检索相关文献, 尝试找出金黄色葡萄球菌超抗原与瘢痕疙瘩信号通路的联系。结果显示, 金黄色葡萄球菌超抗原能激活大部分的瘢痕疙瘩信号通路, 包括磷脂酰肌醇-3激酶/蛋白激酶B、TGF-β/Smad、糖蛋白Wnt、Janus激酶/信号转导及转录激活子[22-25]、MAPK(胞外信号调节蛋白激酶、蛋白激酶p38、Jun氨基端蛋白激酶通路)[26-28]信号通路。同时有学者观察到, 以上各条信号通路之间也存在着相互促进关系[29-31]。还有研究表明, 金黄色葡萄球菌超抗原能激活调节性T细胞, 进而影响瘢痕疙瘩的形成[32-35]。但暂未查询到Notch蛋白信号转导通路、钙/钙调蛋白依赖性丝氨酸蛋白激酶/分化抑制因子1信号通路、RhoA蛋白/Rho激酶-1等信号通路能被金黄色葡萄球菌超抗原激活。

研究表明, 金黄色葡萄球菌超抗原能激活多条病理性瘢痕的信号通路, 故猜想金黄色葡萄球菌的存在产生了金黄色葡萄球菌超抗原, 这种超抗原与TCR Vβ的结合激活体内的各种炎症细胞和免疫细胞, 进而激活相关信号通路, 最终导致瘢痕疙瘩的形成。但本研究中有5例患者是瘢痕疙瘩根除术后复发, 1例瘢痕疙瘩因冻疮所致, 这些患者未检出金黄色葡萄球菌及超抗原等, 因此本研究猜测可能有别的因素引起了耳部瘢痕疙瘩的增生。但到目前为止, 暂未有充分的证据支持这一猜想。

综上所述, 金黄色葡萄球菌分泌的超抗原是耳部瘢痕疙瘩众多发病原因中的一种, 并提出可能是金黄色葡萄球菌超抗原激活了瘢痕疙瘩信号通路的猜想。鉴于以上研究结果尚未进一步在动物模型上得以验证, 不能证明金黄色葡萄球菌与耳部瘢痕疙瘩的必然联系, 但本研究猜想金黄色葡萄球菌超抗原与耳部瘢痕疙瘩有着某种潜在联系。

Funding Statement

南通市市级科技计划(MSZ19244);南通大学附属医院科技计划(2019LY001)

Nantong Municipal Science and Technology Plan (MSZ19244); Science and Technology Plan of Affiliated Hospital of Nantong University (2019LY001)

Footnotes

利益冲突  所有作者均声明不存在利益冲突

References

  • 1.Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int J Mol Sci. 2017;18(3):606. doi: 10.3390/ijms18030606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Hsueh WT, Hung KS, Chen YC, et al. Adjuvant radiotherapy after keloid excision: preliminary experience in Taiwan. Ann Plast Surg. 2019;82(1S Suppl 1):S39–44. doi: 10.1097/SAP.0000000000001728. [DOI] [PubMed] [Google Scholar]
  • 3.Hahn JM, Supp DM. Abnormal expression of the vitamin D receptor in keloid scars. Burns. 2017;43(7):1506–1515. doi: 10.1016/j.burns.2017.04.009. [DOI] [PubMed] [Google Scholar]
  • 4.Ojeh N, Bharatha A, Gaur U, et al. Keloids: current and emerging therapies. Scars Burn Heal. 2020;6:2059513120940499. doi: 10.1177/2059513120940499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Bayat A, Arscott G, Ollier WE, et al. Keloid disease: clinical relevance of single versus multiple site scars. Br J Plast Surg. 2005;58(1):28–37. doi: 10.1016/j.bjps.2004.04.024. [DOI] [PubMed] [Google Scholar]
  • 6.Rockwell WB, Cohen IK, Ehrlich HP. Keloids and hypertrophic scars: a comprehensive review. Plast Reconstr Surg. 1989;84(5):827–837. doi: 10.1097/00006534-198911000-00021. [DOI] [PubMed] [Google Scholar]
  • 7.Harn HI, Ogawa R, Hsu CK, et al. The tension biology of wound healing. Exp Dermatol. 2019;28(4):464–471. doi: 10.1111/exd.13460. [DOI] [PubMed] [Google Scholar]
  • 8.Hsu CK, Lin HH, Harn HI, et al. Caveolin-1 controls hyperresponsiveness to mechanical stimuli and fibrogenesis-associated RUNX2 activation in keloid fibroblasts. J Invest Dermatol. 2018;138(1):208–218. doi: 10.1016/j.jid.2017.05.041. [DOI] [PubMed] [Google Scholar]
  • 9.Jin Q, Gui L, Niu F, et al. Macrophages in keloid are potent at promoting the differentiation and function of regulatory T cells. Exp Cell Res. 2018;362(2):472–476. doi: 10.1016/j.yexcr.2017.12.011. [DOI] [PubMed] [Google Scholar]
  • 10.Chen Z, Zhou L, Won T, et al. Characterization of CD45RO(+) memory T lymphocytes in keloid disease. Br J Dermatol. 2018;178(4):940–950. doi: 10.1111/bjd.16173. [DOI] [PubMed] [Google Scholar]
  • 11.Glass DA. Current understanding of the genetic causes of keloid formation. J Investig Dermatol Symp Proc. 2017;18(2):S50–53. doi: 10.1016/j.jisp.2016.10.024. [DOI] [PubMed] [Google Scholar]
  • 12.Lim KH, Ltinteang T, Davis PF, et al. Stem cells in keloid lesion: a review. Plast Reconstr Surg Glob Open. 2019;7(5):e2228. doi: 10.1097/GOX.0000000000002228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Huang C, Liu L, You Z, et al. Endothelial dysfunction and mechanobiology in pathological cutaneous scarring: lessons learned from soft tissue fibrosis. Br J Dermatol. 2017;177(5):1248–1255. doi: 10.1111/bjd.15576. [DOI] [PubMed] [Google Scholar]
  • 14.Khalid FA, Farooq UK, Saleem M, et al. The efficacy of excision followed by intralesional 5-fluorouracil and triamcinolone acetonide versus excision followed by radiotherapy in the treatment of ear keloids: a randomized control trial. Burns. 2018;44(6):1489–1495. doi: 10.1016/j.burns.2018.02.017. [DOI] [PubMed] [Google Scholar]
  • 15.Wang ZC, Zhao WY, Cao Y, et al. The roles of inflammation in keloid and hypertrophic scars. Front Immunol. 2020;11:603187. doi: 10.3389/fimmu.2020.603187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Jun D, Shin D, Choi H, et al. Clinical efficacy of intermittent magnetic pressure therapy for ear keloid treatment after excision. Arch Craniofac Surg. 2019;20(6):354–360. doi: 10.7181/acfs.2019.00465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Cohen J. Infectious disease. Vaginal microbiome affects HIV risk. Science. 2016;353(6297):331. doi: 10.1126/science.353.6297.331. [DOI] [PubMed] [Google Scholar]
  • 18.刘 文辉, 黄 晓璐, 谢 芸, et al. 瘢痕组织对手术部位感染及细菌定植的影响. 组织工程与重建外科杂志. 2013;9(5):263–267. doi: 10.3969/j.issn.1673-0364.2013.05.006. [DOI] [Google Scholar]
  • 19.Abdurrahman G, Schmiedeke F, Bachert C, et al. Allergy-a new role for T cell superantigens of Staphylococcus aureus? Toxins (Basel) 2020;12(3):176. doi: 10.3390/toxins12030176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Krakauer T. Staphylococcal superantigens: pyrogenic toxins induce toxic shock. Toxins (Basel) 2019;11(3):178. doi: 10.3390/toxins11030178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Oliveira D, Borges A, Simões M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel) 2018;10(6):252. doi: 10.3390/toxins10060252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Alghetaa H, Mohammed A, Sultan M, et al. Resveratrol protects mice against SEB-induced acute lung injury and mortality by miR-193a modulation that targets TGF- β signalling. J Cell Mol Med. 2018;22(5):2644–2655. doi: 10.1111/jcmm.13542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Krakauer T. FDA-approved immunosuppressants targeting staphylococcal superantigens: mechanisms and insights. Immunotargets Ther. 2017;6:17–29. doi: 10.2147/ITT.S125429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kurella S, Yaciuk JC, Dozmorov I, et al. Transcriptional modulation of TCR, Notch and Wnt signaling pathways in SEB-anergized CD4+ T cells. Genes Immun. 2005;6(7):596–608. doi: 10.1038/sj.gene.6364245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.McKay DM, Botelho F, Ceponis PJ, et al. Superantigen immune stimulation activates epithelial STAT-1 and PI 3-K: PI 3-K regulation of permeability. Am J Physiol Gastrointest Liver Physiol. 2000;279(5):G1094–G1103. doi: 10.1152/ajpgi.2000.279.5.G1094. [DOI] [PubMed] [Google Scholar]
  • 26.Li Z, Levast B, Madrenas J. Staphylococcus aureus downregulates IP-10 production and prevents Th1 cell recruitment. J Immunol. 2017;198(5):1865–1874. doi: 10.4049/jimmunol.1601336. [DOI] [PubMed] [Google Scholar]
  • 27.Kearney DE, Wang W, Redmond HP, et al. Bacterial superantigens enhance the in vitro proinflammatory response and in vivo lethality of the TLR2 agonist bacterial lipoprotein. J Immunol. 2011;187(10):5363–5369. doi: 10.4049/jimmunol.1003747. [DOI] [PubMed] [Google Scholar]
  • 28.Hiwatashi Y, Maeda M, Fukushima H, et al. Azithromycin suppresses proliferation, interleukin production and mitogen-activated protein kinases in human peripheral-blood mononuclear cells stimulated with bacterial superantigen. J Pharm Pharmacol. 2011;63(10):1320–1326. doi: 10.1111/j.2042-7158.2011.01343.x. [DOI] [PubMed] [Google Scholar]
  • 29.Fang CX, Ma CM, Jiang L, et al. p38 MAPK is crucial for Wnt1- and LiCl-induced epithelial mesenchymal transition. Curr Med Sci. 2018;38(3):473–481. doi: 10.1007/s11596-018-1903-4. [DOI] [PubMed] [Google Scholar]
  • 30.Vallée A, Lecarpentier Y, Guillevin R, et al. Interactions between TGF-β1, canonical WNT/β -catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget. 2017;852:90579–90604. doi: 10.18632/oncotarget.21234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Liang CJ, Yen YH, Hung LY, et al. Thalidomide inhibits fibronectin production in TGF- β1-treated normal and keloid fibroblasts via inhibition of the p38/Smad3 pathway. Biochem Pharmacol. 2013;85(11):1594–1602. doi: 10.1016/j.bcp.2013.02.038. [DOI] [PubMed] [Google Scholar]
  • 32.Lee J, Park N, Park JY, et al. Induction of immunosuppressive CD8(+)CD25(+)FOXP3(+) regulatory T cells by suboptimal stim ulation with Staphylococcal enterotoxin C1. J Immunol. 2018;200(2):669–680. doi: 10.4049/jimmunol.1602109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Taylor AL, Cross EL, Llewelyn MJ. Induction of contact-dependent CD8(+) regulatory T cells through stimulation with staphylococcal and streptococcal superantigens. Immunology. 2012;135(2):158–167. doi: 10.1111/j.1365-2567.2011.03529.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Ou LS, Goleva E, Hall C, et al. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol. 2004;113(4):756–763. doi: 10.1016/j.jaci.2004.01.772. [DOI] [PubMed] [Google Scholar]
  • 35.Chen Y, Jin Q, Fu X, et al. Connection between T regulatory cell enrichment and collagen deposition in keloid. Exp Cell Res. 2019;383(2):111549. doi: 10.1016/j.yexcr.2019.111549. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Burns are provided here courtesy of Chinese Medical Association

RESOURCES