Abstract
目的
观察白细胞介素6(IL-6)对人脐静脉内皮细胞(HUVEC)表型和功能的影响, 探索IL-6在内皮-间充质转化(EndMT)过程中的作用。
方法
采用实验研究方法。取产妇行分娩手术后弃用的新鲜正常胎儿脐带, 分离培养原代细胞的第2天在倒置相差显微镜下观察细胞形态;免疫荧光法鉴定第4代细胞是否为HUVEC后, 取2批第3~5代HUVEC, 用于后续实验。将第1批细胞按随机数字表法(下同)分为6组:空白对照组、5 ng/mL IL-6组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组、100 ng/mL IL-6组, 将第2批细胞分为4组:空白对照组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组;空白对照组仅加入完全培养液, 其余各组细胞还加入相应终质量浓度的IL-6。第1批细胞, 分组培养后72 h, 倒置相差显微镜下观察6组HUVEC形态;免疫荧光法检测6组HUVEC凝血因子Ⅷ和α平滑肌肌动蛋白(α-SMA)的阳性表达, 并计算双阳性细胞数占凝血因子Ⅷ阳性细胞数的比值(以下简称双阳性细胞数的比值), 样本数为6;实时荧光定量反转录PCR法检测6组HUVEC血管内皮钙黏蛋白和α-SMA蛋白的mRNA表达量, 样本数为3。第2批细胞, 分组培养后72 h, 蛋白质印迹法检测4组HUVEC血管内皮钙黏蛋白、α-SMA和Ⅰ型胶原的蛋白表达量, 样本数为3。对数据行单因素方差分析、Bonferroni校正。
结果
原代分离培养的第2天细胞呈短梭形或多边形, 免疫荧光法鉴定第4代细胞为HUVEC。第1批细胞, 分组培养后72 h, 6组细胞随IL-6浓度的逐渐增加, 其形态向长梭形变化, 细胞间连接减少或消失、间隙变大。分组培养后72 h, 与空白对照组双阳性细胞数的比值相比, 25 ng/mL IL-6组、50 ng/mL IL-6组、100 ng/mL IL-6组显著增高(P < 0.01);与5 ng/mL IL-6组双阳性细胞数的比值相比, 25 ng/mL IL-6组、50 ng/mL IL-6组和100 ng/mL IL-6组显著升高(P < 0.01);与10 ng/mL IL-6组双阳性细胞数的比值相比, 50 ng/mL IL-6组和100 ng/mL IL-6组显著升高(P < 0.01);100 ng/mL IL-6组双阳性细胞数的比值均显著高于25 ng/mL IL-6组、50 ng/mL IL-6组(P < 0.01)。分组培养后72 h, 与空白对照组细胞血管内皮钙黏蛋白的mRNA表达量比, 25 ng/mL IL-6组、50 ng/mL IL-6组和100 ng/mL IL-6组明显下降(P < 0.05或P < 0.01);与5 ng/mL IL-6组细胞血管内皮钙黏蛋白的mRNA表达量比较, 50 ng/mL IL-6组和100 ng/mL IL-6组均明显下降(P < 0.01);与10 ng/mL IL-6组细胞血管内皮钙黏蛋白的mRNA表达量比较, 50 ng/mL IL-6组和100 ng/mL IL-6组明显下降(P < 0.01);与25 ng/mL IL-6组细胞血管内皮钙黏蛋白mRNA的表达量比较, 50 ng/mL IL-6组和100 ng/mL IL-6组明显下降(P < 0.01)。分组培养后72 h, 5 ng/mL IL-6组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组、100 ng/mL IL-6组细胞α-SMA的mRNA表达水平显著高于空白对照组(P < 0.05或P < 0.01)。第2批细胞分组培养后72 h, 与空白对照组细胞血管内皮钙黏蛋白的蛋白表达量1.391±0.026比较, 10 ng/mL IL-6组(1.185±0.063)、25 ng/mL IL-6组(0.717±0.078)、50 ng/mL IL-6组(0.293±0.064)显著降低(P < 0.05);与10 ng/mL IL-6组细胞血管内皮钙黏蛋白的蛋白表达量比较, 25 ng/mL IL-6组、50 ng/mL IL-6组显著降低(P < 0.01);与25 ng/mL IL-6组细胞血管内皮钙黏蛋白的蛋白表达量比较, 50 ng/mL IL-6组显著降低(P < 0.01)。分组培养后72 h, 与空白对照组细胞α-SMA的蛋白表达量比较, 10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组显著升高(P < 0.01);与10 ng/mL IL-6组细胞α-SMA的蛋白表达量比较, 25 ng/mL IL-6组、50 ng/mL IL-6组显著增加(P < 0.01)。分组培养后72 h, 与空白对照组细胞Ⅰ型胶原的蛋白表达量比较, 25 ng/mL IL-6组、50 ng/mL IL-6组显著增加(P < 0.05)。
结论
IL-6作用于HUVEC后, 细胞的表型和功能呈浓度依赖性表现为间质细胞的特征。炎症因子可促进EndMT进程, 成为调控组织纤维化机制的重要因子之一。
Keywords: 白细胞介素6, 内皮细胞, 纤维化, 内皮-间质转化
Abstract
Objective
To observe the effect of interleukin-6 (IL-6) on the phenotype and function of human umbilical vein endothelial cells (HUVECs) and explore the role of IL-6 in the process of endothelial-to-mesenchymal transition (EndMT).
Methods
The experimental research method was used. Fresh umbilical cord discarded after normal maternal delivery was collected. On the second day of the primary cell isolation and cultivation, the cell morphology was observed under inverted phase contrast microscope. HUVECs of the 4th passage were identified by immunofluorescence method, and 2 batches of HUVECs of the 3rd to 5th passages were used for the subsequent experiments. The first batch of cells were divided into 6 groups according to the random number table (the same below): blank control group, 5 ng/mL IL-6 group, 10 ng/mL IL-6 group, 25 ng/mL IL-6 group, 50 ng/mL IL-6 group, and 100 ng/mL IL-6 group. The second batch of cells were divided into 4 groups: blank control group, 10 ng/mL IL-6 group, 25 ng/mL IL-6 group, and 50 ng/mL IL-6 group; the cells in blank control group was cultured with complete culture medium only, while the cells in the other groups were added with IL-6 of the corresponding final mass concentrations. Cells from the 1st batch were cultured for 72 hours after grouping, the morphology of HUVECS in the 6 groups was observed under inverted phase contrast microscope. At 72 h after grouping culture, the positive expressions of coagulation factor Ⅷ and α vascular smooth muscle actin (α-SMA) in HUVECs in the 6 groups were detected by immunofluorescence method, and the ratio of the number of double positive cells to the number of coagulation factor Ⅷ positive cells (the ratio of double positive cells for short) was calculated, with 6 samples per group; mRNA expression levels of vascular endothelial cadherin and α-SMA of HUVECs in 6 groups were detected by reverse transcription-polymerase chain reaction, with 3 samples per group. Cells from the 2nd batch were cultured 72 hours after grouping, the protein expression levels of vascular endothelial cadherin, α-SMA, and type Ⅰ collagen in the 4 groups were detected by Western blotting, with 3 samples per group. Data were statistically analyzed with one-way analysis of variance and Bonferroni correction.
Results
On the 2nd day after isolation and cultivation, the primary cells were in short spindle shape or polygon, cells of the 4th passage were identified as HUVECs by immunofluorescence method. At 72 hours of culture after grouping, the cells from the 1st batch in the 6 groups changed to long spindle shape morphologically along with the increase of IL-6 concentration, the intercellular connections decreased or disappeared with the gap between cells becoming larger. At 72 h after grouping culture, compared with that in blank control group, the ratio of double positive cells in 25 ng/mL IL-6 group, 50 ng/mL IL-6 group, and 100 ng/mL IL-6 group were significantly increased (P < 0.01); compared with that in 5 ng/mL IL-6 group, the ratio of double positive cells in 25 ng/mL IL-6 group, 50 ng/mL IL-6 group, and 100 ng/mL IL-6 group were significantly increased (P < 0.01); compared with that in 10 ng/mL IL-6 group, the ratio of double positive cells in 50 ng/mL IL-6 group and 100 ng/mL IL-6 group were significantly increased (P < 0.01); the ratio of double positive cells in 100 ng/mL IL-6 group was significantly increased compared with those in 25 ng/mL IL-6 group and 50 ng/mL IL-6 group (P < 0.01). At 72 h after grouping culture, compared with that in blank control group, the mRNA expression levels of vascular endothelial cadherin of cells in 25 ng/mL IL-6 group, 50 ng/mL IL-6 group, and 100 ng/mL IL-6 group were significantly decreased (P < 0.01 or P < 0.05); compared with that in 5 ng/mL IL-6 group, the mRNA expression levels of vascular endothelial cadherin of cells in 50 ng/mL IL-6 group and 100 ng/mL IL-6 group were significantly decreased (P < 0.01); compared with that in 10 ng/mL IL-6 group, the mRNA expression levels of vascular endothelial cadherin of cells in 50 ng/mL IL-6 group and 100 ng/mL IL-6 group were significantly decreased (P < 0.01); compared with that in 25 ng/mL IL-6 group, the mRNA expression levels of vascular endothelial cadherin of cells in 50 ng/mL IL-6 group and 100 ng/mL IL-6 group were significantly decreased (P < 0.01). At 72 h after grouping culture, compared with that in blank control group, the mRNA expression levels of α-SMA of cells in 5 ng/mL IL-6 group, 10 ng/mL IL-6 group, 25 ng/mL IL-6 group, 50 ng/mL IL-6, group, and 100 ng/mL IL-6 group were significantly increased (P < 0.05 or P < 0.01). Cells from the 2nd batch were cultured for 72 hours after grouping. Compared with 1.391±0.026 in blank control group, the protein expressions of vascular endothelial cadherin of cells in 10 ng/mL IL-6 group (1.185±0.063), in 25 ng/mL IL-6 group (0.717±0.078), and in 50 ng/mL IL-6 group (0.239±0.064) were significantly decreased (P < 0.05); compared with that in 10 ng/mL IL-6 group, the protein expressions of vascular endothelial cadherin of cells in 25 ng/mL IL-6 group and 50 ng/mL IL-6 group were significantly decreased (P < 0.01); compared with that in 25 ng/mL IL-6 group, the protein expression of vascular endothelial cadherin of cells in 50 ng/mL IL-6 group was significantly decreased (P < 0.01). At 72 h after grouping culture, compared with that in blank control group, the protein expression levels of α-SMA of cells in 10 ng/mL IL-6 group, 25 ng/mL IL-6 group, and 50 ng/mL IL-6 group were significantly increased (P < 0.01); compared with that in 10 ng/mL IL-6 group, the protein expression levels of α-SMA of cells in 25 ng/mL IL-6 group and 50 ng/mL IL-6 group were significantly increased (P < 0.01). At 72 h after grouping culture, compared with that in blank control group, the protein expressions of type Ⅰ collagen of cells in 25 ng/mL IL-6 group and 50 ng/mL IL-6 group were significantly increased (P < 0.05).
Conclusions
After IL-6 treatment, the phenotype and function of HUVECS showed the characteristics of mesenchymal cells in a concentration-dependent manner. The inflammatory factor can promote the process of EndMT, and become one of the important factors regulating the mechanism of tissue fibrosis.
Keywords: Interleukin-6, Endothelial cells, Fibrosis, Endothelial-to-mesenchymal transition
组织器官纤维化是一个世界性的公共卫生问题, 会导致高发生率和高病死率[1]。探讨其发病关键机制是制订新的抗纤维化治疗策略的前提[2]。研究证明急、慢性炎症反应是组织器官纤维化的关键诱因, 但对其发生的精确机制尚不完全清楚, 因此缺乏针对炎症反应促进纤维化的关键环节的有效治疗策略[3-4]。大量研究证实, 肌Fb的增殖或数量增多会导致合成ECM功能增强, 最终导致器官组织内ECM成分过度沉积, 此时机体往往呈炎症反应状态, 因此, 肌Fb被公认是纤维化疾病发生发展的关键效应细胞[3, 5]。目前, 研究证实内皮-间充质转化(EndMT)是组织/器官纤维化发生发展的重要机制之一[6-9]。而纤维化病变组织内往往伴随着慢性炎症反应的发生以及血管的增生和血管内皮细胞的增殖[10], 炎症已被证实为诱导EndMT的重要因素。
EndMT是指在特定的生理和病理条件下, 血管内皮细胞向间质细胞/肌Fb转化, 细胞表型和功能随之发生改变, 即内皮细胞特异性标志物凝血因子Ⅷ、血管内皮钙黏蛋白和血小板内皮细胞黏附分子1/CD31等表达减弱或消失, 转而表达间质细胞特异性标志物, 如Fb特异性蛋白1、α平滑肌肌动蛋白(α-SMA), 同时具有合成Ⅰ型胶原的功能时提示发生EndMT的内皮细胞具有间质细胞的表型和功能。
慢性、炎症性疾病中通常存在血管生成和微血管重塑现象[11-12], 炎症细胞被招募到微环境中, 通过分泌TNF-α、TGF-β、IL-1、IL-6和IL-8等炎症因子促进血管增生[13-15], 同时, 这些细胞因子也可直接作用于增生的血管, 通过上调VEGF的表达来促进血管生成[11]。IL-6是机体炎症反应和修复过程中重要的调节因子[16-18], 在肺、心、肾、眼等不同器官的纤维化模型中均观察到IL-6具有促纤维化作用[15, 17-18]。因此, 该研究团队推测:除TGF-β和TNF-α外[7-8], IL-6可能也是EndMT的重要诱导因子。为寻找纤维化疾病治疗的新靶点, 本文通过体外实验探讨IL-6对人脐静脉内皮细胞(HUVEC)的表型及其功能的影响, 进一步阐明IL-6在纤维化疾病中的作用及其机制。
1. 资料与方法
本研究经陆军特色医学中心伦理委员会审批, 批号:医研伦审(2015)第003号。
1.1. 主要试剂与仪器来源
胎牛血清和DMEM/F12培养基购自美国HyClone公司, IL-6、Hochest33342、明胶购自美国Sigma公司, 重组人EGF(rhEGF)、重组人碱性FGF(rhbFGF)、重组人VEGF(rhVEGF)购自美国Pepro Tech公司, 山羊血清、Ⅳ型胶原酶、胰蛋白酶购自美国Gibco公司, 小鼠抗人α-SMA多克隆抗体、兔抗人凝血因子Ⅷ多克隆抗体、小鼠抗人Ⅰ型胶原多克隆抗体、小鼠抗人血管内皮钙黏蛋白多克隆抗体、罗丹明标记的山羊抗小鼠IgG抗体、异硫氰酸荧光素标记的山羊抗兔IgG抗体均购自北京中杉金桥生物技术有限公司, PCR试剂盒购自日本TaKaRa公司, RIPA裂解液、小鼠β肌动蛋白单克隆抗体、苯甲基磺酰氟(PMSF)和二辛可酸蛋白定量试剂盒购自上海碧云天生物技术有限公司, GAPDH、α-SMA、血管内皮钙黏蛋白引物均由上海捷瑞生物有限公司合成, 2000TM型凝胶成像仪、电泳仪和PCR仪购自美国Bio-Rad公司, Ⅸ-70型倒置相差显微镜、BX50型荧光显微镜购自日本Olympus公司。
1.2. 细胞的分离与培养
无菌条件下, 取产妇分娩手术后弃用的剩余的新鲜正常胎儿脐带(陆军特色医学中心妇产科提供)15~20 cm, 脐静脉管腔一端插入16号针头固定, 用4 ℃预冷PBS冲洗, 直至脐静脉管腔流出液体颜色为澄清无血色。血管钳夹闭脐静脉另一端, 向脐静脉管腔内注入体积比1∶1预热(37 ℃)的1 g/L的Ⅳ型胶原酶和2.5 g/L胰蛋白酶混合消化液至充盈, 37 ℃孵育12~20 min。用含体积分数10%小牛血清DMEM/F12的培养液冲洗静脉管腔以中和多余的消化液, 收集中和液于离心管中, 以半径10 cm、800 r/min离心5 min, 弃上清液, 用含体积分数20%胎牛血清、10 ng/mL rhVEGF、100 ng/mL rhEGF、10 ng/mL rhbFGF、100 U/mL青霉素、100 U/mL链霉素的DMEM/F12培养液(下称完全培养液)重新悬浮并混匀细胞。将细胞接种于预先用10 g/L明胶包被的25 cm2细胞培养瓶中, 置于37 ℃含体积分数5%二氧化碳培养箱中恒温培养24 h。次日, 除去未贴壁的细胞, 更换新鲜完全培养液。待细胞生长至80%以上融合时, 进行消化并传代培养。原代培养第2、7天在倒置相差显微镜下观察细胞形态。
1.3. 细胞鉴定
采用免疫荧光法鉴定。将1.2培养的第4代细胞以1×105个/mL密度接种于预先置有盖玻片的12孔板中, 每孔1 mL。待盖玻片上的细胞生长至80%融合时, 吸掉完全培养液, PBS洗涤后用40 g/L多聚甲醛固定。加入含体积分数0.3% 聚乙二醇辛基苯基醚的PBS室温孵育5 min。加入山羊血清, 37 ℃封闭30 min。加入兔抗人凝血因子Ⅷ多克隆一抗(稀释比为1∶150), 4 ℃孵育过夜。PBS洗涤后, 加入异硫氰酸荧光素标记的山羊抗兔IgG二抗(稀释比为1∶150), 37 ℃孵育30 min。于室温下用10 μg/mL Hochest 33342染核10 min。甘油封片后, 在40倍荧光显微镜下观察并拍照。每张切片选取10个视野, 应用ImageJ软件(美国国立卫生研究院)计数凝血因子Ⅷ阳性细胞数和细胞核数, 计算凝血因子Ⅷ阳性表达率。凝血因子Ⅷ阳性细胞呈绿色, 反映细胞为HUVEC。凝血因子Ⅷ阳性表达率=凝血因子Ⅷ阳性细胞数÷细胞核数×100%。
1.4. 细胞的分组与处理
取2批第3~5代细胞, 以1×105个/mL密度接种于10 g/L明胶预包被的6孔板中, 每孔1 mL。接种后24 h, 将第1批细胞按照随机数字表法(下同)分为6组:空白对照组、5 ng/mL IL-6组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组、100 ng/mL IL-6组, 每组9孔;取第2批细胞, 分为4组:空白对照组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组, 每组3孔。空白对照组细胞仅用完全培养液培养;不同浓度IL-6组的细胞除完全培养液外还分别加入相应终质量浓度的IL-6进行培养。
1.5. 观测指标
1.5.1. 细胞形态
第1批细胞分组培养后72 h, 倒置相差显微镜下观察其形态、数量、体积及细胞间连接情况。
1.5.2. 细胞α-SMA和凝血因子Ⅷ的阳性表达情况
用免疫荧光法鉴定。第1批细胞分组培养后72 h, 40 g/L多聚甲醛室温固定15 min后, 置于含体积分数0.3%聚乙二醇辛基苯基醚的PBS中5 min。加入山羊血清, 37 ℃封闭30 min, 甩干多余封闭液。分别加入兔抗人凝血因子Ⅷ多克隆一抗和小鼠抗人α-SMA多克隆一抗(稀释比均为1∶100), 4 ℃孵育过夜。分别加入罗丹明标记的山羊抗小鼠IgG二抗和异硫氰酸荧光素标记的山羊抗兔IgG二抗(稀释比均为1∶200), 37 ℃避光孵育40 min。加入10 μg/mL的Hochest 33342染核5 min。甘油封片后, 40倍荧光显微镜下观察细胞α-SMA和凝血因子Ⅷ阳性表达情况并拍照, 凝血因子Ⅷ阳性细胞为绿色, α-SMA阳性细胞为红色, 双阳性表达呈黄色。应用ImageJ软件对α-SMA或凝血因子Ⅷ的阳性细胞进行计数分析。α-SMA与凝血因子Ⅷ双阳性细胞数的比值=双阳性细胞数÷凝血因子Ⅷ阳性细胞数。本实验每组1个样本, 重复6次, 结果取均值。
1.5.3. 细胞血管内皮钙黏蛋白和α-SMA的mRNA表达情况
采用异硫氰酸胍法提取第1批细胞分组培养后72 h的mRNA, 采用实时荧光定量RT-PCR法检测6组细胞血管内皮钙黏蛋白和α-SMA的mRNA表达水平, 引物序列及产物大小见表 1;PCR反应条件为95 ℃预变性180 s, 95 ℃变性30 s, 58 ℃退火30 s, 72 ℃延伸60 s, 共35个循环。扩增产物用琼脂糖凝胶电泳法检测, 在凝胶成像分析仪上扫描电泳条带, 应用ImageJ软件进行条带灰度值测定。以GAPDH为内参照, 目的基因表达量=目的条带灰度值÷GAPDH条带的灰度值。本实验每组1个样本, 重复3次, 结果取均值。
表 1.
实时荧光定量反转录PCR法检测6组人脐静脉内皮细胞血管内皮钙黏蛋白和α平滑肌肌动蛋白的mRNA引物序列及产物大小
引物名称 | 引物序列(5'→3') | 产物大小(bp) |
注:GAPDH为3-磷酸甘油醛脱氢酶 | ||
GAPDH | 上游:GGCAAATTCCATGGCACCGTC | 591 |
下游:TTCTAGACGGCAGGTCAGGTC | ||
血管内皮钙黏蛋白 | 上游:ACATCACAGTCAAGTATGGGC | 230 |
下游:GATGCAGAGTAAGATGGCTGC | ||
α平滑肌肌动蛋白 | 上游:TTCAATGTCCCAGCCATGTA | 240 |
下游:GAAGGAATAGCCACGCTCAG |
1.5.4. 细胞血管内皮钙黏蛋白和Ⅰ型胶原及α-SMA蛋白的表达情况
采用蛋白质印迹法检测。将第2批细胞分组培养后72 h, 用RIPA裂解液(含终物质的量浓度1 mmol/L的PMSF)提取细胞总蛋白, 使用二辛可酸蛋白定量试剂盒测定蛋白浓度。加入上样缓冲液煮沸5~10 min。行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳, 半干法转膜, 用50 g/L脱脂奶粉溶液封闭2 h, 分别加入小鼠抗人血管内皮钙黏蛋白多克隆一抗、小鼠抗人Ⅰ型胶原多克隆一抗、小鼠抗人α-SMA多克隆一抗(稀释比均为1∶500)及小鼠抗人β肌动蛋白单克隆一抗(稀释比为1∶1 000), 4 ℃孵育过夜。加入罗丹明标记的山羊抗小鼠IgG二抗(稀释比为1∶10 000), 室温孵育2~3 h。化学发光、显影, 凝胶成像仪获取图像, 采用ImageJ软件行灰度分析, 以β肌动蛋白为内参照计算血管内皮钙黏蛋白、α-SMA、Ⅰ型胶原与β肌动蛋白蛋白灰度值的比值。本实验每组1个样本, 重复3次, 结果取均值。
1.6. 统计学处理
采用SPSS 24.0统计软件进行分析。计量资料数据均符合正态分布, 以x±s表示。组间总体比较采用单因素方差分析, 组间两两比较采用Bonferroni校正(软件自动略去该统计量值)。P < 0.05为差异有统计学意义。
2. 结果
2.1. 原代细胞的形态学观察及其鉴定
原代培养第2天, 部分原代细胞完全贴壁, 贴壁细胞呈短梭形或多边形, 细胞边界清晰。原代培养第7天, 细胞融合成单层, 密集的细胞呈典型的铺路石样排列, 稀疏处为短梭形。第4代细胞生长旺盛, 免疫荧光法鉴定细胞为100%凝血因子Ⅷ阳性细胞, 反映所培养细胞为HUVEC。见图 1。
图 1.
原代培养人脐静脉内皮细胞(HUVEC)培养第2、7天的形态及第4代细胞凝血因子Ⅷ阳性(绿色)表达情况。1A.原代培养第2天, 部分细胞完全贴壁, 贴壁细胞呈短梭形或多边形 倒置相差显微镜×40, 图中标尺为50 μm;1B.原代培养第7天, 细胞融合成单层, 呈典型的铺路石样排列 倒置相差显微镜×20, 图中标尺为100 μm;1C.第4代细胞免疫荧光法鉴定为100%凝血因子Ⅷ阳性细胞即HUVEC 荧光显微镜×40, 图中标尺为50 μm
2.2. IL-6对HUVEC形态的影响
第1批细胞分组培养后72 h, 空白对照组细胞呈多边、短梭形, 呈铺路石样排列生长;而5 ng/mL IL-6组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组和100 ng/mL IL-6组细胞的数量依次减少、体积依次变大, 细胞间连接依次减少且间隙变宽, 细胞形态依次变长、向梭形转变(图 2)。
图 2.
空白对照组与5个不同浓度白细胞介素6(IL-6)处理组培养后72 h人脐静脉内皮细胞形态变化 倒置相差显微镜×40, 图中标尺为50 μm。2A.空白对照组细胞呈短梭形或多边形, 细胞间连接紧密;2B、2C、2D、2E、2F.分别为5 ng/mL IL-6组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组、100 ng/mL IL-6组细胞, 随着IL-6浓度增加, 细胞形态逐渐向梭形转变, 细胞间连接减少或消失, 间隙变大
2.3. HUVEC中α-SMA和凝血因子Ⅷ的阳性表达
第1批HUVEC分组培养后72 h, 空白对照组细胞几乎均为凝血因子Ⅷ阳性细胞, 仅见极少α-SMA阳性细胞, 未见α-SMA和凝血因子Ⅷ双阳性细胞;5 ng/mL IL-6组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组、100 ng/mL IL-6组细胞凝血因子Ⅷ阳性细胞数量依次减少, α-SMA阳性细胞数量依次增多。与空白对照组α-SMA与凝血因子Ⅷ双阳性细胞数的比值相比, 25 ng/mL IL-6组、50 ng/mL IL-6组和100 ng/mL IL-6组显著升高(P < 0.001);与5 ng/mL IL-6组α-SMA与凝血因子Ⅷ双阳性细胞数的比值相比, 25 ng/mL IL-6组、50 ng/mL IL-6组和100 ng/mL IL-6组显著升高(P=0.006、 < 0.001、 < 0.001);与10 ng/mL IL-6组α-SMA与凝血因子Ⅷ双阳性细胞数的比值相比, 50 ng/mL IL-6组和100 ng/mL IL-6组显著升高(P < 0.001);与25 ng/mL IL-6组α-SMA与凝血因子Ⅷ双阳性细胞数的比值相比, 100 ng/mL IL-6组显著升高(P < 0.001);与50 ng/mL IL-6组α-SMA与凝血因子Ⅷ双阳性细胞数的比值相比, 100 ng/mL IL-6组显著升高(P < 0.001)。见图 3、4。
图 3.
免疫荧光法检测空白对照组与5个不同浓度白细胞介素6(IL-6)处理组培养后72 h人脐静脉内皮细胞凝血因子Ⅷ和α-SMA的蛋白表达 荧光显微镜×40, 图中标尺为50 μm。3A.空白对照组细胞均表达凝血因子Ⅷ, 几乎无α-SMA阳性细胞;3B、3C、3D、3E、3F.分别为5 ng/mL IL-6组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组和100 ng/mL IL-6组细胞, 随着IL-6浓度增加, 凝血因子Ⅷ阳性细胞数逐渐减少, α-SMA阳性细胞数则增多
注:凝血因子Ⅷ阳性细胞为绿色, α平滑肌肌动蛋白(α-SMA)阳性细胞为红色, 凝血因子Ⅷ和α-SMA双阳性细胞呈黄色
图 4.
免疫荧光法检测空白对照组与5个不同浓度IL-6处理组培养后72 h人脐静脉内皮细胞α平滑肌肌动蛋白与凝血因子Ⅷ双阳性细胞数的比值(x±s, 样本数为6)
注:IL-6为白细胞介素6;1、2、3、4、5、6分别为空白对照组、5 ng/mL IL-6组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组、100 ng/mL IL-6组;6组间总体比较, F=79.720, P < 0.001;与空白对照组比较, aP < 0.01;与5 ng/mL IL-6组比较, bP < 0.01;与10 ng/mL IL-6组比较, cP < 0.01;与25 ng/mL IL-6组比较, dP < 0.01;与50 ng/mL IL-6组比较, eP < 0.01
2.4. HUVEC中血管内皮钙黏蛋白和α-SMA的mRNA表达
第1批HUVEC培养后72 h, 与空白对照组细胞血管内皮钙黏蛋白的mRNA表达量比较, 25 ng/mL IL-6组、50 ng/mL IL-6组和100 ng/mL IL-6组明显下降(P=0.017、 < 0.001、 < 0.001);与5 ng/mL IL-6组血管内皮钙黏蛋白的mRNA表达量比较, 50 ng/mL IL-6组和100 ng/mL IL-6组均明显下降(P < 0.001);与10 ng/mL IL-6组血管内皮钙黏蛋白的mRNA表达量比较, 50 ng/mL IL-6组和100 ng/mL IL-6组均明显下降(P < 0.001);与25 ng/mL IL-6组血管内皮钙黏蛋白的mRNA表达量比较, 50 ng/mL IL-6组和100 ng/mL IL-6组均明显下降(P < 0.001);5 ng/mL IL-6组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组、100 ng/mL IL-6组细胞α-SMA的mRNA表达量均显著高于空白对照组(P=0.015、0.008、0.004、0.002、0.007)。见图 5。
图 5.
实时荧光定量反转录PCR法检测空白对照组与5个不同浓度IL-6处理组培养后72 h人脐静脉内皮细胞血管内皮钙黏蛋白、α平滑肌动蛋白的mRNA表达。5A.条带图;5B.条图(x±s, 样本数为3)
注:IL-6为白细胞介素6, GAPDH为3-磷酸甘油醛脱氢酶;条带图上方和条图横坐标1、2、3、4、5、6分别为空白对照组、5 ng/mL IL-6组、10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组和100 ng/mL IL-6组;6组间血管内皮钙黏蛋白和α-SMA总体比较, F=27.805、8.348, P=0.001、0.001;与空白对照组比较, aP < 0.05, bP < 0.01;与5 ng/mL IL-6组比较, cP < 0.01;与10 ng/mL IL-6组比较, dP < 0.01;与25 ng/mL IL-6组比较, eP < 0.01
2.5. HUVEC血管内皮钙黏蛋白和α-SMA及Ⅰ型胶原的蛋白表达
第2批HUVEC培养后72 h, 与空白对照组细胞血管内皮钙黏蛋白的蛋白表达量比较, 10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组显著降低(P=0.019、 < 0.001、 < 0.001);与10 ng/mL IL-6组细胞血管内皮钙黏蛋白的蛋白表达量比较, 25 ng/mL IL-6组、50 ng/mL IL-6组显著降低(P < 0.001);与25 ng/mL IL-6组细胞血管内皮钙黏蛋白的蛋白表达量比较, 50 ng/mL IL-6组显著降低(P < 0.001)。与空白对照组细胞α-SMA的蛋白表达量比较, 10 ng/mL IL-6组、25 ng/mL IL-6组、50 ng/mL IL-6组均显著升高(P=0.009、 < 0.001、 < 0.001);与10 ng/mL IL-6组细胞α-SMA的蛋白表达量比较, 25 ng/mL IL-6组、50 ng/mL IL-6组均显著升高(P < 0.001);与空白对照组细胞Ⅰ型胶原的蛋白表达量比较, 25 ng/mL IL-6组、50 ng/mL IL-6组均显著增加(P=0.038、0.010)。见图 6。
图 6.
蛋白质印迹法检测空白对照组与3个不同浓度IL-6处理组培养后72 h人脐静脉内皮细胞血管内皮钙黏蛋白、α平滑肌肌动蛋白和Ⅰ型胶原的蛋白表达量。6A.条带图;6B.条图(x±s, 样本数为3)
注:IL-6为白细胞介素6, GAPDH为3-磷酸甘油醛脱氢酶;条带图上方和条图横坐标1、2、3、4分别为空白对照组、10 ng/mL IL-6组、25 ng/mL IL-6组和50 ng/mL IL-6组;4组间血管内皮钙黏蛋白、α平滑肌肌动蛋白和Ⅰ型胶原总体比较, F=195.606、70.670、4.285, P=0.001、 < 0.001、0.044;与空白对照组比较, aP < 0.05, bP < 0.01;与10 ng/mL IL-6组比较, cP < 0.01;与25 ng/mL IL-6组比较, dP < 0.05
3. 讨论
IL-6是主要炎症反应因子之一, 在免疫反应、炎症反应等生物过程中发挥作用[19-20]。多项研究报道IL-6与特发性肺纤维化、肝细胞纤维化等纤维化疾病相关[15, 21]。本文通过体外培养HUVEC, 观察不同浓度IL-6对其表型和功能的影响。
实验结果显示, 在体外培养的HUVEC中加入不同浓度的IL-6刺激72 h, 细胞形态发生明显改变, 最初为铺路石样生长, 逐渐由短梭形向长梭形转变, 并且随着IL-6浓度的增加细胞形态变化、梭形细胞数量增加更为明显;与此同时, 免疫荧光法的检测结果显示随着IL-6浓度的增加, α-SMA和凝血因子Ⅷ双阳性细胞数量的比值均较空白対照组升高。上述结果提示IL-6能促进血管内皮细胞向基质细胞转化, 而且这种转化作用随着其刺激浓度增加而增强;进一步通过实时荧光定量RT-PCR法检测证实, 当IL-6浓度逐渐增加时, IL-6各处理组内皮细胞特异性标志物血管内皮钙黏蛋白的mRNA表达逐渐减少, 相反, 基质细胞特异性标志物α-SMA的mRNA表达水平则呈IL-6浓度依赖性增加且显著高于空白对照组;蛋白质印迹法检测结果也与实时荧光定量RT-PCR结果一致。在此对结果进行特别说明:由于α-SMA和内参照β肌动蛋白蛋白分子量相同(均为42×103), 因此, 在电泳时分别配制2块胶进行分离, 但是在实验过程中样品的蛋白上样量始终保持一致。综上, 与TNF-α和TGF-β相似[13-14], IL-6不仅能促进内皮细胞向间质细胞形态转变, 还能促进内皮细胞表型和功能向间质细胞转化。总之, 促炎性细胞因子IL-6具有促进EndMT的作用。
有文献报道, IL-6可以直接作用于内皮细胞, 引起内皮细胞内肌丝分布重新排列, 导致原有内皮细胞形态发生改变, 从而增加内皮细胞通透性, 导致胞内蛋白质外渗[9, 11]。此外, 有研究证实细胞内蛋白激酶和第二信使的平衡对调控微血管内皮细胞形态起着重要作用[22], 这种平衡在一定程度上是由2个主要蛋白激酶——蛋白激酶A(PKA)和PKC-α及第二信使环磷酸腺苷(cAMP)与钙之间的平衡维持的[23-24]。当PKA和cAMP升高时, 内皮细胞呈典型的上皮样形态, 具有维持血管稳态所必需的紧密缝隙连接。相反, 当佛波酯、炎症细胞因子、钙等因素激活PKC-α时, 内皮细胞间紧密的缝隙连接发生溶解, 转变为梭形形态。PKC-α被认为是诱导内皮细胞转化的关键酶[9, 25], 有研究观察到IL-6作为经典的炎症细胞因子, 可能通过上调内皮细胞PKC-α的表达[26], 增加细胞内PKC-α水平, 从而促进内皮细胞形态向梭形转变, 导致细胞间紧密缝隙连接离断[12], 内皮细胞间隙增宽, 表现为炎症时的血管通透性增加、水肿形成等改变。有研究证实, 柚皮苷能改善心肌纤维化, 有助于延缓糖尿病心脏纤维化的进展[27], 其机制主要是通过抑制PKC-α的活性以增加细胞内cAMP水平, 抑制EndMT, 抑制心肌纤维化。
实验结果证实, 炎症细胞因子IL-6具有促进EndMT的作用, 因此, 在炎症反应微环境内, 炎症因子能促进内皮细胞和微血管的增生[3, 6, 9], 这可能为EndMT的发生提供了物质基础, 成为纤维化组织中肌Fb的重要来源之一。抗肌Fb的增生是临床纤维化疾病治疗关键环节之一, 同样, 阻断其来源, 阻断EndMT发生是抗纤维化治疗的关键策略[28]。因此, 在抗炎治疗的同时, 采取针对炎症引发EndMT发生的关键分子机制的治疗举措, 延缓和阻断纤维化疾病的进程, 可能成为纤维化疾病防治的重要策略。因此, 进一步探讨EndMT发生的分子机制具有重要的临床意义。
Funding Statement
国家自然科学基金面上项目(81571912、30871025);重庆市院士牵头科技创新引导专项(cstc2017zdcy-yszxX0002)
General Program of National Natural Science Foundation of China (81571912, 30871025); Foundational and Cutting-edge Research Plan of Chongqing Special Projects for Academicians (cstc2017zdcy-yszxX0002)
Footnotes
利益冲突 所有作者均声明不存在利益冲突
References
- 1.Mehta RL, Cerdá J, Burdmann EA, et al. International society of nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet. 2015;385(9987):2616–2643. doi: 10.1016/S0140-6736(15)60126-X. [DOI] [PubMed] [Google Scholar]
- 2.Rockey DC, Bell PD, Hill JA. Fibrosis--a common pathway to organ injury and failure. N Engl J Med. 2015;372(12):1138–1149. doi: 10.1056/NEJMra1300575. [DOI] [PubMed] [Google Scholar]
- 3.Maria A, Bourgier C, Martinaud C, et al. From fibrogenesis towards fibrosis: pathophy -siological mechanisms and clinical presentations. Rev Med Interne. 2020;41(5):325–329. doi: 10.1016/j.revmed.2020.01.002. [DOI] [PubMed] [Google Scholar]
- 4.Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational im plications. Mol Aspects Med. 2019;65:2–15. doi: 10.1016/j.mam.2018.06.003. [DOI] [PubMed] [Google Scholar]
- 5.Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int. 2015;87(2):297–307. doi: 10.1038/ki.2014.287. [DOI] [PubMed] [Google Scholar]
- 6.Patel J, Baz B, Wong HY, et al. Accelerated endothelial to mesenchymal transition increased fibrosis via deleting notch signaling in wound vasculature. J Invest Dermatol. 2018;138(5):1166–1175. doi: 10.1016/j.jid.2017.12.004. [DOI] [PubMed] [Google Scholar]
- 7.Pérez L, Muñoz-Durango N, Riedel CA, et al. Endothelial-to-mesenchymal transition: cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev. 2017;33:41–54. doi: 10.1016/j.cytogfr.2016.09.002. [DOI] [PubMed] [Google Scholar]
- 8.Singh S, Adam M, Matkar PN, et al. Endothelial-specific loss of IFT88 promotes endothelial-to-mesenchymal transition and exacerbates bleomycin-induced pulmonary fibrosis. Sci Rep. 2020;10(1):4466. doi: 10.1038/s41598-020-61292-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Bischoff J. Endothelial-to-mesenchymal transition. Circ Res. 2019;124(8):1163–1165. doi: 10.1161/CIRCRESAHA.119.314813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Okamoto A, Nojiri T, Konishi K, et al. Atrial natriuretic peptide protects against bleomycin-induced pulmonary fibrosis via vascular endothelial cells in mice: ANP for pulmonary fibrosis. Respir Res. 2017;18(1):1. doi: 10.1186/s12931-016-0492-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Bian XW, Chen JH, Jiang XF, et al. Angiogenesis as an immunopharmacologic target in inflammation and cancer. Int Immunopharmacol. 2004;4(12):1537–1547. doi: 10.1016/j.intimp.2004.07.017. [DOI] [PubMed] [Google Scholar]
- 12.Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: role in physiology and in the pathogenesis of human diseases. Physiol Rev. 2019;99(2):1281–1324. doi: 10.1152/physrev.00021.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.代 卉, 黄 宏, 王 莎莉, et al. 肿瘤坏死因子α对促进血管内皮细胞向间质细胞转化的实验研究. 中华烧伤杂志. 2012;28(1):19–24. doi: 10.3760/cma.j.issn.1009-2587.2012.01.006. [DOI] [PubMed] [Google Scholar]
- 14.简 宇, 简 华刚, 黄 宏, et al. 转化生长因子-β1促血管内皮细胞向间质细胞转化的作用研究. 第三军医大学学报. 2010;32(21):2307–2310. [Google Scholar]
- 15.Mack M. Inflammation and fibrosis. Matrix Biol. 2018;68/69:106–121. doi: 10.1016/j.matbio.2017.11.010. [DOI] [PubMed] [Google Scholar]
- 16.Johnson BZ, Stevenson AW, Prêle CM, et al. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines. 2020;8(5):101. doi: 10.3390/biomedicines8050101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Madaro L, Passafaro M, Sala D, et al. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat Cell Biol. 2018;20(8):917–927. doi: 10.1038/s41556-018-0151-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Sato K, Takeda A, Hasegawa E, et al. Interleukin-6 plays a crucial role in the development of subretinal fibrosis in a mouse model. Immunol Med. 2018;41(1):23–29. doi: 10.1080/09114300.2018.1451609. [DOI] [PubMed] [Google Scholar]
- 19.Kishimoto T. IL-6:from its discovery to clinical applications. Int Immunol. 2010;22(5):347–352. doi: 10.1093/intimm/dxq030. [DOI] [PubMed] [Google Scholar]
- 20.Tanaka T, Narazaki M, Masuda K, et al. Regulation of IL-6 in immunity and diseases. Adv Exp Med Biol. 2016;941:79–88. doi: 10.1007/978-94-024-0921-5_4. [DOI] [PubMed] [Google Scholar]
- 21.Papiris SA, Tomos IP, Karakatsani A, et al. High levels of IL-6 and IL-8 characterize early-on idiopathic pulmonary fibrosis acute exacerbations. Cytokine. 2018;102:168–172. doi: 10.1016/j.cyto.2017.08.019. [DOI] [PubMed] [Google Scholar]
- 22.Lipton BH, Bensch KG, Karasek MA. Histamine-modulated trans-differentiation of dermal microvascular endothelial cells. Exp Cell Res. 1992;199(2):279–291. doi: 10.1016/0014-4827(92)90436-c. [DOI] [PubMed] [Google Scholar]
- 23.Tuder RM, Karasek MA, Bensch KG. Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells. J Cell Physiol. 1990;142(2):272–283. doi: 10.1002/jcp.1041420209. [DOI] [PubMed] [Google Scholar]
- 24.Lim DM, Park KY, Hwang WM, et al. Difference in protective effects of GIP and GLP-1 on endothelial cells according to cyclic adenosine monophosphate response. Exp Ther Med. 2017;13(5):2558–2564. doi: 10.3892/etm.2017.4279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Addis R, Campesi I, Fois M, et al. Human umbilical endothelial cells (HUVECs) have a sex: characterisation of the phenotype of male and female cells. Biol Sex Differ. 2014;5(1):18. doi: 10.1186/s13293-014-0018-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.França FD, Ferreira AF, Lara RC, et al. Alteration in cellular viability, pro-inflammatory cytokines and nitric oxide production in nephrotoxicity generation by Amphotericin B: involvement of PKA pathway signaling. J Appl Toxicol. 2014;34(12):1285–1292. doi: 10.1002/jat.2927. [DOI] [PubMed] [Google Scholar]
- 27.Adebiyi OA, Adebiyi OO, Owira PM. Naringin reduces hyperglycemia-induced cardiac fibrosis by relieving oxidative stress. PLoS One. 2016;11(3):e0149890. doi: 10.1371/journal.pone.0149890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Li S, Wang Y, Chen L, et al. Beraprost sodium mitigates renal interstitial fibrosis through repairing renal microvessels. J Mol Med (Berl) 2019;97(6):777–791. doi: 10.1007/s00109-019-01769-x. [DOI] [PubMed] [Google Scholar]