Skip to main content
West China Journal of Stomatology logoLink to West China Journal of Stomatology
. 2025 Feb 1;43(1):1–14. [Article in Chinese] doi: 10.7518/hxkq.2025.2024306

先天口面裂的分级分类诊疗专家共识

Expert consensus on classification and diagnosis of congenital orofacial cleft

Li Chenghao 1,1,✉,, An Yang 2, Duan Xiaohong 3, Guo Yingkun 4, Liu Shanling 5, Luo Hong 6, Ma Duan 7, Ren Yunyun 8, Wang Xudong 9, Wu Xiaoshan 10, Xie Hongning 11, Zhu Hongping 12, Zhu Jun 13, Shi Bing 1
Editor: 李 彩
PMCID: PMC11917503  PMID: 39840621

Abstract

先天口面裂是颌面部最常见的出生缺陷,其预后根据畸形的病因和严重程度的不同有着很大的差别。其中非综合征型先天口面裂的畸形程度较轻且治愈效果好,综合征型先天口面裂常因伴有身体其他器官的异常而致使治疗难度较大,预后较差。本共识对不同严重程度的先天口面裂进行详细的分级分类,并提出相应的诊疗指南,为患者家庭应对产前筛查结果、选择治疗方案提供参考,对我国预防和控制严重出生缺陷发生、促进人口长期均衡发展具有重要意义。

Keywords: 先天口面裂, 分级分类, 诊疗


国家卫生健康委办公厅于2023年发布的《出生缺陷防治能力提升计划(2023—2027年)》中指出“预防和控制严重出生缺陷发生,聚焦提升出生缺陷防治服务能力”,对出生缺陷的防治提出了更高、更具体的要求。以唇腭裂、面裂为代表的先天口面裂畸形是颌面部最常见的出生缺陷,会影响患者身心健康,给家庭和社会带来经济和社会负担[1]

先天口面裂根据畸形的病因和严重程度不同,预后差别很大,如非综合征型唇腭裂虽然高发但治疗效果好,而且随着现代诊疗技术的进步,有更多的先天口面裂治疗预后效果趋于良好。但是,大约有30%的综合征型先天口面裂病情复杂,常伴有身体其他器官或组织的异常[2],其治疗难度往往较大且预后常常不太理想。以上复杂的情况导致很多唇腭裂患者或者家庭在选择诊治方案、应对产前筛查结果方面产生了困扰。因此组建外科、产前诊断、遗传咨询等多学科专家团队,根据临床预后结果、影像和产前诊断特征,建立先天口面裂分级分类的影像和产前诊断标准,形成先天口面裂的分级分类诊疗共识或者指南,对预防和控制严重口面裂出生缺陷发生,构建和提升临床治疗效果好的口面裂患儿保障体系,落实国家《出生缺陷防治能力提升计划(2023—2027年)》中“预防和控制严重出生缺陷发生”,促进人口长期均衡发展具有重要意义。

1. 分级分类共识的原则

以遗传检查结果为基础,分为非综合征型和综合征型;以临床治疗复杂程度为导向,按涉及的治疗部位分为轻微、轻度、中度及重度。

2. 分级分类的建议

2.1. 非综合征型先天口面裂

非综合征型先天口面裂是不伴有全身其他部位异常的先天口面裂,通常包含以下几种类型:唇裂、腭裂、牙槽突裂以及面裂,以上不同类型的口面裂可单独出现也可同时出现。需要特别说明的是,患有先天口面裂的患儿,在其婴幼儿早期阶段可能会伴发一些系统性疾病(如单纯性动脉导管未闭、卵圆孔未闭等),此类疾病会随着年龄的增长逐渐自愈。如若出现此类情况,将不会被计入综合征型分类,而是统一划分为非综合征型先天口面裂。

根据分级分类原则,将单独出现的口面裂定义为单纯先天口面裂,定级为轻微。其包括:1)单侧唇裂(微小型唇裂、不完全性唇裂、完全性唇裂);2)腭裂(腭隐裂、软腭裂、硬软腭裂、完全性腭裂);3)牙槽突裂(不完全性牙槽突裂、完全性牙槽突裂);4)面裂(面横裂、面斜裂、正中唇裂)等。

根据分级分类原则,将同时发生在颌面部3个部位及以下非综合征型先天口面裂定义为轻度。其包括:1)双侧唇裂(双侧不完全性唇裂、双侧完全性唇裂、双侧混合性唇裂);2)唇裂伴腭裂或牙槽突裂(唇裂伴腭裂、唇裂伴牙槽突裂、唇裂伴腭裂伴牙槽突裂)等。

目前非综合征型口面裂的整体治疗效果较好,特别是轻微级,基本可以无障碍融入社会。

2.2. 综合征型先天口面裂

合并其他身体畸形或发育迟缓的先天口面裂称为综合征型先天口面裂。与非综合征型先天口面裂不同,综合征型先天口面裂多由明确的染色体结构异常或单基因突变所致,符合孟德尔遗传定律。本团队以患者是否存在智力障碍将综合征型进行分级,分为不伴有智力障碍的综合征型先天口面裂和伴有智力障碍的综合征型先天口面裂,同时依据每种疾病的严重程度将其进行中度至重度的分类评价。

2.2.1. 不伴有智力障碍的综合征型先天口面裂

临床上相对常见的不伴有智力障碍的综合征型先天口面裂,包括Van der Woude综合征、Stickler综合征、Pierre Robin序列征、Treacher Collins综合征、Marshall综合征、先天性缺指/趾-外胚层发育不良-唇/腭裂综合征、Apert综合征、Ander-sen-Tawil综合征、Burn-McKeown综合征、Catel-Manzke综合征、鳃眼面(Branchio-oculo-facial)综合征、睑缘粘连-外胚层发育不良-唇/腭裂、Rapp-Hodgkin综合征、Miller综合征、羊膜破裂序列征、Diamond-Blackfan综合征、多发性骨骺发育不良、脊椎骨骺先天性发育不良、Beckwith-Wiedemann综合征、躯干发育异常、下颌骨颜面发育不全伴小头畸形综合征、Nager综合征、耳-腭-指综合征1型、重睑-淋巴水肿综合征等。本研究对这些不伴有智力障碍的综合征型先天口面裂的主要致病基因或相关染色体、临床表征、严重程度进行总结,详见表1

表 1.

不伴有智力障碍的综合征型先天口面裂

Tab 1 Syndromic congenital orofacial cleft without intellectual disability

综合征 患病率 主要致病基因或相关染色体 临床表征 严重程度 参考文献
Van der Woude综合征 1/30 000~1/10 000 IRF6、GRHL3 唇腭裂,先天性下唇部凹陷或瘘管,牙齿发育不全,并且患者家属中也可同时出现唇腭裂及下唇凹陷等特征 中度 [3-5]
Stickler综合征 1/10 000 Ⅰ型:COL2A1;Ⅱ型:COL11A1;Ⅲ型:COL11A2;Ⅳ型:COL9A1;Ⅴ型:COL9A2;Ⅵ型:COL9A3 1)眼部疾病:高度近视和视网膜脱离;2)听力损害:听觉丧失和频繁的耳内感染;3)颅面异常:腭裂、小鼻、小颌畸形;4)骨骼肌异常:关节炎和关节松弛、脊柱侧弯、脊椎滑脱、骨骺滑脱或Legg-Perthes样疾病 中度 [6-7]
Pierre Robin序列征 1/20 000~1/8 500 SOX9、KCNJ2 常伴发腭裂,腭裂发生率约为90%,多为不完全性腭裂,并且多数伴有不同程度的喂养困难、营养不良、呼吸困难,甚至睡眠窒息 中度 [8-10]
Treacher Collins综合征 1/50 000 TCOF1、POLR1D、POLR1C和POLR1B 1)睑裂下斜、眼睑缺损、面骨发育不全(尤其是下颌骨和颧骨复合体)、外耳和中耳畸形、腭裂和巨口等,形成特征性的“鱼面样”面容;2)后鼻孔闭锁、舌后坠、传导性耳聋 中度 [11-12]
Marshall综合征 不详 COLL11A1 1)可能伴有Pierre Robin序列征;2)鼻发育不全,面中分发育不足,近视以及通常为进展性的感觉神经性或混合性听力丧失 中度 [13-14]
先天性缺指/趾-外胚层发育不良-唇/腭裂综合征 1/90 000 TP63 1)84%的病例先天性缺指(趾)、并指(趾)或手足裂;2)68%的病例伴发唇腭裂;3)具有典型外胚层缺损面容;4)其他系统:毛发发育异常,牙齿发育异常,涎腺发育不全,涎液少,汗腺发育不全 中度 [15-17]
Apert综合征 1/65 000 FGFR2 1)可伴有腭裂;2)颅缝早闭,面部不对称、尖头、短头、面中部发育不良;3)眼部特征,包括下斜睑裂、眼距过长、斜视、眼球突出等;4)并指(趾) 重度 [18-19]
Andersen-Tawil综合征 1/100 000 60%~70%与KCNJ2基因突变相关,但仍有30%遗传机制不明,部分报道与KCNJ5基因突变相关 三联征:1)反复发作的周期性麻痹;2)有症状的心律失常或心电图;3)典型发育畸形,如宽眼距、腭裂、小下颌、低耳廓、第5指(趾)弯曲畸形、第2、3趾(指)并趾畸形、身材矮小和脊柱侧凸等 重度 [20-22]
Burn-McKeown综合征 不详 TXNL4A 1)颌面部畸形,包括鼻梁突出、睑裂下斜、眶距过宽、下眼睑缺损、耳朵大且突出、唇腭裂、小下颌、人中短;2)后鼻孔闭锁;3)传导性耳聋;4)可伴有先天性心脏病、多囊性肾发育不良、肛门闭锁(不常见) 中度 [23-25]
Catel-Manzke综合征 不详 TGDS 1)Pierre Robin序列征表现;2)其他颌面部发育畸形:睑裂过短、高弓形眉毛,耳部发育畸形、低位耳,高腭穹、唇裂;3)生长发育迟缓;4)四肢骨骼畸形;5)有可能伴有心血管畸形;6)胸腹部畸形 中度 [26-28]
Branchio-oculo-facial综合征 不详 TFAP2A 1)颈部鳃裂皮肤缺损;2)眼部畸形;3)特征性面部表现:宽鼻梁、额前突、耳畸形以及内耳畸形、唇腭裂等;4)异位胸腺/肾脏畸形/全身多毛症;5)1级亲属为该征患者 中度 [29-31]
睑缘粘连-外胚层发育不良-唇/腭裂 已报道的仅50例,具体患病率不详 P63 1)唇腭裂;2)睑缘粘连(70%);3)外胚层发育不良:常表现为皮肤糜烂;4)四肢畸形、尿道下裂、牙关紧闭症、听力障碍、发育迟缓 重度 [32-34]
Rapp-Hodgkin综合征 不详 TP63 1)典型的颅面异常:泪管发育不良、外耳道狭小或闭锁、唇腭裂、头发卷曲稀疏;2)新生儿期尚可发生干皮症、指尖皮纹消失、掌纹变平,少汗,但对热能耐;3)男孩有尿道下裂;4)光滑舌,先天性无舌系带及舌下肉阜;5)牙齿数目减少、畸形牙、牙釉质发育不良、患龋倾向等 中度 [35-38]
Miller综合征 约1/1 000 000 DHODH 1)颧骨发育不全、小颌畸形;2)唇腭裂;3)后鼻孔闭锁,视神经盘缺损,低位、向后旋转的杯状耳朵,睑裂下斜;4)四肢异常 中度 [39-41]
羊膜破裂序列征 7.8/10 000 尚不清楚,但产前超声检查可有效诊断 1)四肢畸形:四肢截肢,淋巴水肿,并指(趾)异常皮肤隆起,畸形足;2)颅脑畸形:非对称性脑膨出,无脑畸形,颅骨缺如;3)颌面部畸形(包括唇腭裂);4)胸腔畸形;5)脊柱畸形;6)腹壁部位:腹裂,膀胱外翻 重度 [42-43]
Diamond-Blackfan综合征 1.5/1 000 000~5.0/1 000 000 RPS19最常见;RPL35A、RPL5、RPL11、RPS24、RPS17、RPS7、RPS10、RPS26也有报道 1)骨髓衰竭;2)先天发育异常:主要涉及头部、上肢、心脏和泌尿生殖系统(包括唇腭裂);3)癌症易感性增加 重度 [44-45]
多发性骨骺发育不良 1/20 000 显性遗传:COMP、COL9A1、COL9A2、COL9A3、MATN3;隐性遗传:DTDST、SLC26A2、CANT1 1)常染色体显性存在于儿童早期,通常在运动后臀部或膝盖疼痛;2)常染色体隐性一般出现在青春期晚期或成年早期,特征是关节疼痛,手、脚、膝盖畸形和脊柱侧凸;3)50%的患者至少有一个异常特征,如马蹄足、腭裂、手指或脚趾弯曲变形等 中度 [46-47]
脊椎骨骺先天性发育不良 1/100 000 COL2A1 1)Pierre-Robin序列征很常见;2)X线片显示椎体呈卵圆形,伴骨骺骨化延迟;3)患者继发气道问题和肺发育不全,生命早期死亡率增高 重度 [48-49]
Beckwith-Wiedemann综合征 1/13 700 LIT1、H19、CDKN1C 1)临床表现为巨舌,脐膨出,躯体偏侧肥大致不对称生长,耳叶状皱褶,臀部螺旋状凹陷;2)Pierre Robin序列征常见;3)新生儿低血糖症;4)可能有罹患恶性肿瘤的风险,预后不良 重度 [50-51]
躯干发育异常 不详 SOX9 1)通常伴发Pierre Robin序列征,受累个体表现为出生前后的生长不足伴骨成熟迟缓和巨头畸形;2)四肢:胫骨前端弓形突出伴突出区域的皮肤凹陷;3)支气管软骨发育不良,呼吸困难;4)75%染色体为男性的病例出现性别倒错 重度 [52-53]
下颌骨颜面发育不全伴小头畸形综合征 不详 EFTUD2 1)特征为进行性小头症,面中部和颧部发育不全,小颌畸形,小耳畸形,耳道闭锁,听力损失,智力障碍和言语延迟;2)Pierre Robin序列征表现很常见;3)少数可有气道闭锁、食管闭锁、心脏缺陷 中度 [54-55]
Nager综合征 已报道的不到200例 SF3B4 1)桡侧四肢短缩畸形和下颌骨-面骨发育不全;2)Pierre Robin序列征常见;3)耳畸形、四肢畸形 中度 [56-57]
耳-腭-指综合征1型 发病率<1/100 000 FLNA 1)身材短小和轻度的精神迟缓;2)颅面特征:包括额部和枕部突出,眶距过宽,面骨发育不全,Pierre Robin序列征常见;3)骨骼畸形;4)神经性听力丧失 重度 [58-59]
重睑-淋巴水肿综合征 不详 MFH1、FOXC2 1)淋巴水肿,最初为下肢受累;2)角膜刺激、复发性结膜炎、畏光常见;3)少数伴有腭裂、脊椎和心脏缺陷 中度 [60-61]

2.2.2. 伴有智力障碍的综合征型先天口面裂

临床上相对常见的伴有智力障碍的综合征型先天口面裂,包括CHARGE综合征、腭心面综合征、Goldenhar综合征、Rubinstein-Taybi综合征、歌舞伎综合征、Gorlin综合征、Mowat-wilson综合征、Crouzon综合征、Cornelia de Lange综合征、Joubert综合征、Cerebro-costo-mandibular综合征、Wolf-Hirschhorn综合征(又称4p-综合征)、Opitz G/BBB综合征、Meckel-Gruber综合征、Au-Kline 综合征、Opitz-Kaveggia综合征、Neu-Laxova综合征、Larsen综合征、Juberg-Hayward综合征、Roberts综合征、Richieri-Costa-Pereira综合征、Patau综合征、Edward综合征、Waardenburg症候群、Fryns综合征、脆性X染色体综合征、Smith-Lemli-Opitz 综合征等。本研究对这些伴有智力障碍的综合征型先天口面裂的主要致病基因或相关染色体、临床表征、严重程度进行总结,详见表2

表 2.

伴有智力障碍的综合征型先天口面裂

Tab 2 Syndromic congenital orofacial cleft with intellectual disability

综合征 患病率 主要致病基因或相关染色体 临床表征 严重程度 参考文献
CHARGE综合征 1/10 000-1/15 000 CHD7 1)眼畸形;2)心脏畸形;3)后鼻孔闭锁;4)生长发育迟滞和/或中枢神经系统障碍;5)生殖器发育不全;6)耳畸形及听力障碍 重度 [62-63]
腭心面综合征 1/4 000 TBX1 1)精神、行为及认知能力障碍;2)面容:眼睛较小,眼距较大,眶下区扁平,睑裂较窄,鼻梁较挺、长脸等;3)先天性心脏病;4)其他系统:胸腺及甲状旁腺发育不良,腭咽部发育异常 重度 [64-66]
Goldenhar综合征 1/7 000-1/3 500 某些染色体异常,如5号染色体短臂缺失、7号染色体三体嵌合、18号染色体长臂缺失、环形21号染色体等 1)颌骨发育不良;2)面裂或腭裂;3)身高矮,精神运动发育迟缓,语言障碍等;4)心理社交问题,自闭症等 重度 [67-69]
Rubinstein-Taybi综合征 1/12 500 CREBBP、EP300 1)智力障碍;2)生长发育迟缓;3)多系统畸形:①肢体畸形,具有宽而扁的大拇指/脚趾、指/趾蹼;②特殊面容:高眉弓、长睫毛、眼睛异常、鹰钩鼻、上颌骨发育不全、高腭弓、腭裂、上唇短、异样笑容等;③多系统发育异常:胼胝体发育不全、大枕骨大孔等 重度 [70-72]
歌舞伎综合征 1/32 000 主要为MLL2,少数为KDM6A 1)轻、中度智力发育迟缓;2)特殊的面部:下眼睑外翻,弓形眉毛伴外侧三分之一稀疏或分散,鼻尖凹陷,耳朵突出,常伴有小下颌、腭盖高拱、腭裂等;3)其他系统:骨骼异常(92%),皮纹异常(93%) 中度 [73-75]
Gorlin综合征 1/57 000~1/164 000 PTCH1 1)发育异常:包括过度生长,智力低下,神经管闭合不全,骨异常(如分叉肋、多指畸形、颅内钙化、手足红色小凹陷)等;2)唇裂伴或不伴腭裂;3)对某些肿瘤易感 中至重度 [76-78]
Mowat-wilson综合征 1/70 000~1/50 000 ZEB2 1)中重度智力缺陷;2)颅面口部畸形(97%):包括小头畸形、眼距过宽、杯状耳、腭裂等;3)泌尿生殖系统异常;4)先天性心脏缺陷;5)癫痫 重度 [79-80]
Crouzon综合征 不详 FGFR2 1)颅缝早闭,短头畸形;2)中面部发育不良(含有腭裂);3)眼距过宽,眼球突出;4)脑积水、智力低下 重度 [81-82]
Cornelia de Lange综合征 1/50 000 常染色体显性遗传:NIPBL、RAD21、SMC3;X连锁遗传模式:HDAC8、SMC1A 1)腭部高拱,腭裂;2)中枢神经系统症状,严重智力障碍,癫痫;3)生长迟滞,多毛症;4)心脏畸形;5)肢体缺损;6)其他系统:泌尿道异常,胃肠系统疾病等 重度 [83-84]
Joubert综合征 1/100 000-1/80 000 常染色体隐性遗传:Ahi1、Cc2d2a、Cep290、Cplane1、Cspp1、Inpp5e、Kiaa0586、Mks1、Nphp1、Rpgrip1l、Tmem67、Tmem216;X连锁遗传:Ofd1 1)神经病理学改变,小脑蚓部发育不全;2)发育迟缓,智力发育落后;3)其他系统:唇腭裂,肌张力减退,异常呼吸,异常眼运动 重度 [85-87]
Cerebro-costo-mandibular综合征 报道75例,发病率难以估计 SNRPB 1)神经系统异常,智力低下;2)生长迟缓;3)翼状胬肉和中枢神经系统发育障碍;4)其他系统:腭裂,听力损失,气管软骨异常,肘部和锁骨发育不全,脊柱侧弯等。 重度 [88-90]
Wolf-Hirschhorn综合征 1/50 000~1/20 000 4号染色体短臂末端p16.3缺失 1)生长发育障碍,智力低下;2)癫痫;3)希腊勇士头盔面容,伴有唇腭裂;4)其他系统畸形障碍,包括骨骼异常、先天性心脏缺陷、听力丧失、泌尿系统畸形和脑结构异常等 重度 [91-93]
Opitz G/BBB综合征 1)X染色体上的基因突变:男性偏多,发病率1/50 000~1/10 000;2)常染色体显性遗传模式:发病率1/4 000 1)X染色体上的MID1基因突变;2)常染色体显性遗传模式:22号染色体上很大一部分区域的基因突变 1)面部畸形:最常见,包括眼距过宽、前额突出、唇腭裂等;2)喉气管食管畸形:常致吞咽和呼吸困难,甚至死亡;3)大部分男性患者存在泌尿生殖系统畸形;4)部分存在生长发育迟缓,行动、学习、语言障碍;5)自闭症 重度 [94-96]
Meckel-Gruber综合征 1/140 000~1/13 250 17q21~17q24染色体上基因突变 1)唇腭裂;2)囊性肾发育不良;3)枕部脑膨出或其他中枢神经系统异常;4)多指(趾)畸形 重度 [97-99]
Au-Kline综合征 报道26例 HNRNPK 1)发育迟缓,智力障碍,肌张力减低;2)与歌舞伎综合征相似,部分伴有颅缝早闭、高腭、腭裂,部分双眼凸出或出现蹼颈;3)宽大的第一脚趾及脚趾排列拥挤,第五指斜指、指关节突出,或伴有多趾/指畸形;4)部分出现先天性心脏异常、结缔组织及骨骼异常、泌尿系统异常 重度 [100-102]
Opitz-Kaveggia综合征 不详 MED12 1)生长发育迟缓,身材矮小,智力低下,惊厥,胼胝体发育不良,先天性肌张力低下,运动能力差;2)头大(与身体不成比例),前额高宽,额发上卷,唇腭裂,内眦侧向移位,鼻根高,耳小,关节挛缩,肛门闭锁;3)部分患者的母亲(携带者)有前额宽、额发上卷、肛门错位;4)先天性心脏畸形 重度 [103-105]
Neu-Laxova综合征 不详 PHGDH、PSAT1、PSPH 1)唇腭裂或腭盖高拱,凸眼,眼睑缺如,大口畸形,囟门关闭,眼距过宽,鼻梁凹陷,双耳下垂;2)胎儿生长发育迟缓,且呈对称性,妊娠中期可通过超声检查确诊;3)皮肤鱼鳞病;4)中枢神经系统发育障碍:多表现为程度严重的小头畸形和典型的前额倾斜 重度 [106-108]
Larsen综合征 约1/100 000 FLNB 1)面中分扁平呈盘状,前额部呈结节状突出,眼距增宽,睑裂上斜,鼻梁低平呈马鞍状,唇腭裂;2)指过短;远节指骨过宽,拇指过宽等;3)附腕骨;4)少数伴有骨骺形态异常,心血管系统异常,颈椎异常,传导性听力损害等 重度 [109-111]
Juberg-Hayward综合征 不详 ESCO2 1)小头畸形,唇腭裂,拱形眉弓,眶距过宽,鼻桥宽而平;2)低出生体重,身材矮小;3)肘关节受限/脱位,径向发育不全,脚趾并趾;4)广泛的骨骼疾病 重度 [112-114]
Roberts综合征 不详 ESCO2 1)唇腭裂,潜在的出生前即已开始的颅面特征生长不足,眶距过宽,面中分毛细血管型血管瘤,眼眶浅,蓝色巩膜,稀疏、银白色头发;2)肢体缺损:包括无四肢,短四肢,肱骨、桡骨、尺骨、股骨、胫骨和/或腓骨短缩缺损,上肢通常受累较严重;3)少数出现颅内缺损,可伴脑疝和脑积水 重度 [115-117]
Richieri-Costa-Pereira综合征 不详 EIF4A3 1)下颌中线处生长和融合异常导致的下颌骨发育不足、下牙槽嵴裂、下前牙缺失等,以及小口畸形、耳部畸形;2)Pierre-Robin序列征;3)喉部畸形;4)肢体形态异常;5)超过50%有学习障碍和语言迟缓 中至重度 [118-119]
Patau综合征 1/4 000~1/10 000 13号染色体三体异常 1)最具特征性的畸形表现包括不同程度的前脑无裂畸形,小眼畸形,头皮缺损,心脏缺陷以及多趾畸形;2)60%~80%伴发唇腭裂;3)脐膨出、多囊肾;4)生长迟缓和严重的认知障碍 重度 [120-121]
Edward综合征 1/6 000,女性多见 18号染色体三体异常 1)出生前生长迟缓,枕部突出伴眶上嵴发育不全,小鼻和小口,唇腭裂,胸骨短;2)先天性屈曲指伴指甲发育不全,明显的低弓形皮纹,短而背屈的拇趾;3)严重的精神障碍 重度 [122-123]
Waardenburg症候群 1/42 000 Ⅰ型、Ⅲ型:Pax3;Ⅱ型:Mitf;Ⅳ型:Ednrp、Edn3、Sox10 临床表现包括:1)虹膜异色症,双眼或一眼为蓝色巩膜,也有部分颜色正常;2)单耳或双耳听力障碍,发生率为9%~38%;3)额前一缕白发或易有少年白;4)内眦外移,两眼眼距较宽,但瞳孔间距正常;5)鼻根宽阔且鼻翼发育不良;6)并眉;7)下颌颏部较大、较宽;8)长期便秘,甚至同时罹患先天性巨结肠症;9)少数有皮肤脱色斑、先天性心脏病或肌肉、骨骼异常等症状。4种亚型中,Ⅰ型患者为典型的瓦氏症,具有上述1~6的特征,25%有耳聋;Ⅱ型患者具有Ⅰ型相似症状(除了内眦外移),50%有耳聋;Ⅲ型患者有肢体短缩缺陷,面容改变与Ⅰ型一致,有些还有小头症及重度智障;Ⅳ型患者面容改变与Ⅱ型一致,同时伴有先天性巨结肠 中至重度 [124-125]
Fryns综合征 0.7/100 000 尚不清楚,依靠产前影像检查诊断 1)面容特征粗犷,伴宽鼻梁,短鼻,大口和小颌畸形,唇腭裂;2)指、内外生殖器发育不良或畸形;3)50%有中枢神经系统严重畸形,包括Dandy-Walker畸形、无嗅脑畸形和胼胝体发育不全;4)胃肠道系统畸形,肺发育不良,膈肌缺损或膈疝等 重度 [126-127]
脆性X染色体综合征 男性1/1 200~1/2 500,女性1/1 650~1/5 000 FMR1 1)智力低下,语言障碍,行为障碍;2)容貌改变:腭裂或腭隐裂,窄脸,面中部发育差,前额突出,下颌前突,耳部特殊改变(如大耳、耳外翻、招风耳、单耳轮等);3)生殖系统:睾丸增大;4)其他:20%有癫痫发作,少数患者有二尖瓣脱垂、升主动脉扩张 重度 [128-129]
Smith-Lemli-Opitz综合征 不详 DHCR7 1)出生前后生长不足,中重度精神障碍;2)特征性的畸形模式,包括上睑下垂,宽鼻尖,鼻孔前倾,心脏畸形、第2、3脚趾并趾畸形;3)腭裂;4)内脏畸形 重度 [130-131]

综上,综合征型先天口面裂除了患有口面裂疾病以外,还伴有全身其他部位较为严重的畸形。此外,很多染色体病也会伴发口面裂、多发器官或组织的结构和功能障碍,其中有些患者还伴有神经系统异常或智力障碍。罹患上述综合征或染色体病的患儿出生后会经历漫长且复杂的治疗,其中有些畸形不可治愈,甚至会因严重畸形导致患儿死亡。患儿的生活质量非常低下,其整个家庭会承受很大的负担与压力。所以需要通过对先证者的遗传学检测及产前的遗传学检测、影像学检查,对综合征型先天口面裂进行较为精确的诊断,实现对严重出生缺陷的有效筛查。

本共识对不同严重程度的先天口面裂进行了详细的分级分类,并提出了相应的诊疗指南,为患者家庭应对产前筛查结果、选择治疗方案提供了参考,对提高我国人口质量、预防和控制严重出生缺陷发生、促进人口长期均衡发展具有重要的意义。

Acknowledgments

感谢四川大学华西口腔医院张翀博士为本共识的内容进行整理!

Biographies

graphic file with name WCJS-43-1-1-g001.gif

李承浩,四川大学华西口腔医学院教授、主任医师,唇腭裂外科党支部书记、科主任。四川大学和美国德克萨斯州Baylor医学中心整形外科联合培养博士,美国俄亥俄州Cincinnati儿童医学中心整形外科博士后,曾赴匹兹堡大学、宾夕法尼亚大学、约翰霍普金斯大学整形中心等多个国际中心访学。四川省学术与技术带头人(后备),中华口腔医学会颌面外科专业委员会委员,中华口腔医学会唇腭裂专业委员会副主任委员,中国医师协会先天畸形修复学组副组长,中华医学会整形外科分会委员,微笑列车中国唇腭裂慈善项目医学专家委员会常务委员,微笑明天慈善基金专家委员会常务委员,美国颅颌面研究会会员。发表SCI论文40余篇,主编及参编专著10部。主持和参加多个国家及省级重点项目,获四川省科技进步二等奖一项(排名第二),获中国首个PSF/smile train奖学金。创新唇畸形肌肉平衡重建理论与技术,唇隐裂和唇鼻继发畸形的“无痕”修复,“两阶段”牙槽突裂整复术等。

graphic file with name WCJS-43-1-1-g002.gif

石冰,四川大学二级教授,四川省及四川大学华西口腔医院首席专家,博士研究生导师,四川省学术与技术带头人,四川省天府名医。中华口腔医学会口腔颌面外科专业委员会前任主任委员、中华口腔医学会唇腭裂专业委员会顾问,中国医师协会口腔颌面外科专科医师培养委员会主任委员,中国医师协会口腔医学毕业后教育委员会副主任委员,国家口腔质控中心副主任,微笑列车中国唇腭裂慈善项目医学专家委员会委员。卫生部规化教材《口腔颌面外科学》副主编,研究生教材《唇腭裂与面裂》主编,《国际口腔医学杂志》主编。新世纪百千万人才工程国家级人选,政府津贴获得者,国际牙医师学院院士,国家卫生计生委有突出贡献的中青年专家。获国家自然科学基金资助项目8次(重点项目1次),主编和主译出版了《唇腭裂修复外科学》《唇腭裂手术图谱》《唇腭裂综合治疗学》《Primary Cleft Lip and Palate Repair》。发表论文500余篇,SCI收录论文100余篇。获中华医学奖(三等奖)和四川省科技进步奖两次。创建的新旋转推进法、唇弓重建双侧唇裂整复术、腭裂SF整复术等新理论和技术已广泛应用于临床。主要研究方向包括先天性唇腭裂发病机制、生长发育变化规律和临床治疗新技术、新方法的研究。shibingcn@vip.sina.com

基金资助

四川省科学技术厅中央引导地方科技发展项目(2023-ZYD0111);四川省科学技术厅重点研发项目(2023YFS0245)

Central Government-Guided Local Science and Technology Development Project of Sichuan Provincial Science and Technology Department (2023ZYD0111); Key Research and Development Project of Sichuan Provincial Science and Technology Department (2023YFS0245)

利益冲突声明

作者声明本文无利益冲突。

参考文献

  • 1. Mossey PA, Little J, Munger RG, et al. Cleft lip and palate[J]. Lancet, 2009, 374(9703): 1773-1785. [DOI] [PubMed] [Google Scholar]
  • 2. 孙嘉琳, 林岩松, 石冰, 等. 5种常见综合征型唇腭裂遗传学研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 718-724. [Google Scholar]; Sun JL, Lin YS, Shi B, et al. Research progress on genetics of five common syndromic subtypes of cleft lip and palate[J]. Int J Stomatol, 2021, 48(6): 718-724. [Google Scholar]
  • 3. Houdayer C, Bonaïti-Pellié C, Erguy C, et al. Possible relationship between the van der Woude syndrome (vWS) locus and nonsyndromic cleft lip with or without cleft palate (NSCL/P)[J]. Am J Med Genet, 2001, 104(1): 86-92. [DOI] [PubMed] [Google Scholar]
  • 4. Wang Y, Sun Y, Huang Y, et al. Association study between Van der Woude Syndrome causative gene GRHL3 and nonsyndromic cleft lip with or without cleft palate in a Chinese cohort[J]. Gene, 2016, 588(1): 69-73. [DOI] [PubMed] [Google Scholar]
  • 5. Li S, Zhang X, Chen D, et al. Association between genotype and phenotype of virulence gene in Van der Woude syndrome families[J]. Mol Med Rep, 2018, 17(1): 1241-1246. [DOI] [PubMed] [Google Scholar]
  • 6. Mortier G. Stickler Syndrome[M]//Adam MP, Feldman J, Mirzaa GM, et al. GeneReviews. Seattle: University of Washington, 2000. [Google Scholar]
  • 7. Boothe M, Morris R, Robin N. Stickler syndrome: a review of clinical manifestations and the genetics evaluation[J]. J Pers Med, 2020, 10(3): E105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Bixler D, Christian JC. Pierre Robin syndrome occurring in two related sibships[J]. Birth Defects Orig Artic Ser, 1971, 7(7): 67-71. [PubMed] [Google Scholar]
  • 9. Benko S, Fantes JA, Amiel J, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence[J]. Nat Genet, 2009, 41(3): 359-364. [DOI] [PubMed] [Google Scholar]
  • 10. Hsieh ST, Woo AS. Pierre robin sequence[J]. Clin Plast Surg, 2019, 46(2): 249-259. [DOI] [PubMed] [Google Scholar]
  • 11. Marszałek-Kruk BA, Wójcicki P, Dowgierd K, et al. Treacher collins syndrome: genetics, clinical features and management[J]. Genes (Basel), 2021, 12(9): 1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Aljerian A, Gilardino MS. Treacher Collins syndrome[J]. Clin Plast Surg, 2019, 46(2): 197-205. [DOI] [PubMed] [Google Scholar]
  • 13. Stratton RF, Lee B, Ramirez F. Marshall syndrome[J]. Am J Med Genet, 1991, 41(1): 35-38. [DOI] [PubMed] [Google Scholar]
  • 14. Baraitser M. Marshall/Stickler syndrome[J]. J Med Genet, 1982, 19(2): 139-140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Roelfsema NM, Cobben JM. The EEC syndrome: a literature study[J]. Clin Dysmorphol, 1996, 5(2): 115-127. [DOI] [PubMed] [Google Scholar]
  • 16. Penchaszadeh VB, de Negrotti TC. Ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome: dominant inhe-ritance and variable expression[J]. J Med Genet, 1976, 13(4): 281-284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Thakkar S, Marfatia Y. EEC syndrome sans clefting: va-riable clinical presentations in a family[J]. Indian J Dermatol Venereol Leprol, 2007, 73(1): 46-48. [DOI] [PubMed] [Google Scholar]
  • 18. Khelkar PC, Kadam AN, Karjodkar FR, et al. Apert’s syndrome: a rare craniofacial disorder[J]. J Indian Soc Pedod Prev Dent, 2020, 38(4): 430-433. [DOI] [PubMed] [Google Scholar]
  • 19. Ibrahimi OA, Chiu ES, McCarthy JG, et al. Understanding the molecular basis of Apert syndrome[J]. Plast Reconstr Surg, 2005, 115(1): 264-270. [PubMed] [Google Scholar]
  • 20. Nguyen HL, Pieper GH, Wilders R. Andersen-Tawil syndrome: clinical and molecular aspects[J]. Int J Cardiol, 2013, 170(1): 1-16. [DOI] [PubMed] [Google Scholar]
  • 21. Pérez-Riera AR, Barbosa-Barros R, Samesina N, et al. Andersen-tawil syndrome: a comprehensive review[J]. Cardiol Rev, 2021, 29(4): 165-177. [DOI] [PubMed] [Google Scholar]
  • 22. Veerapandiyan A, Statland JM, Tawil R. Andersen-Tawil syndrome[M]//Adam MP, Feldman J, Mirzaa GM, et al. GeneReviews. Seattle: University of Washington, 2004. [PubMed] [Google Scholar]
  • 23. Lüdecke HJ, Wieczorek D. TXNL4A-related craniofacial disorders[M]//Adam MP, Feldman J, Mirzaa GM, et al. GeneReviews. Seattle: University of Washington, 2016. [PubMed] [Google Scholar]
  • 24. Narayanan DL, Purushothama G, Bhavani GS, et al. Burn-McKeown syndrome with biallelic promoter type 2 deletion in TXNL4A in two siblings[J]. Am J Med Genet A, 2020, 182(6): 1313-1315. [DOI] [PubMed] [Google Scholar]
  • 25. Wood KA, Ellingford JM, Thomas HB, et al. Expanding the genotypic spectrum of TXNL4A variants in Burn-McKeown syndrome[J]. Clin Genet, 2022, 101(2): 255-259. [DOI] [PubMed] [Google Scholar]
  • 26. Manzke H, Lehmann K, Klopocki E, et al. Catel-Manzke syndrome: two new patients and a critical review of the literature[J]. Eur J Med Genet, 2008, 51(5): 452-465. [DOI] [PubMed] [Google Scholar]
  • 27. Pferdehirt R, Jain M, Blazo MA, et al. Catel-manzke syndrome: further delineation of the phenotype associa-ted with pathogenic variants in TGDS[J]. Mol Genet Metab Rep, 2015, 4: 89-91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Boschann F, Stuurman KE, de Bruin C, et al. TGDS pathogenic variants cause Catel-Manzke syndrome without hyperphalangy[J]. Am J Med Genet A, 2020, 182(3): 431-436. [DOI] [PubMed] [Google Scholar]
  • 29. Tekin M, Sirmaci A, Yüksel-Konuk B, et al. A complex TFAP2A allele is associated with branchio-oculo-facial syndrome and inner ear malformation in a deaf child[J]. Am J Med Genet A, 2009, 149A(3): 427-430. [DOI] [PubMed] [Google Scholar]
  • 30. Titheradge HL, Patel C, Ragge NK. Branchio-oculo-facial syndrome: a three generational family with markedly variable phenotype including neonatal lethality[J]. Clin Dysmorphol, 2015, 24(1): 13-16. [DOI] [PubMed] [Google Scholar]
  • 31. Min J, Mao B, Wang Y, et al. A heterozygous novel mutation in TFAP2A gene causes atypical branchio-oculo-facial syndrome with isolated coloboma of choroid: a case report[J]. Front Pediatr, 2020, 8: 380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Sutton VR, van Bokhoven H. GeneReviews[M]. Seattle: University of Washington, 2010. [Google Scholar]
  • 33. Guo S, Chen R, Xu Y, et al. Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome[J]. J Craniofac Surg, 2017, 28(4): e349-e351. [DOI] [PubMed] [Google Scholar]
  • 34. Zhang Z, Cheng R, Liang J, et al. Ankyloblepharon-ectodermal dysplasia-clefting syndrome misdiagnosed as epidermolysis bullosa and congenital ichthyosiform erythroderma: case report and review of published work[J]. J Dermatol, 2019, 46(5): 422-425. [DOI] [PubMed] [Google Scholar]
  • 35. Kantaputra PN, Hamada T, Kumchai T, et al. Hetero-zygous mutation in the SAM domain of p63 underlies Rapp-Hodgkin ectodermal dysplasia[J]. J Dent Res, 2003, 82(6): 433-437. [DOI] [PubMed] [Google Scholar]
  • 36. Tosun G, Elbay U. Rapp-Hodgkin syndrome: clinical and dental findings[J]. J Clin Pediatr Dent, 2009, 34(1): 71-75. [DOI] [PubMed] [Google Scholar]
  • 37. Dalben Gda S, Danelon LB, Carrara CF. Prosthetic rehabilitation of a child with Rapp-Hodgkin syndrome[J]. J Dent Child (Chic), 2012, 79(2): 115-119. [PubMed] [Google Scholar]
  • 38. Chatterjee M, Neema S, Mukherjee S. Rapp Hodgkin syndrome[J]. Indian Dermatol Online J, 2017, 8(3): 215-216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Fang J, Uchiumi T, Yagi M, et al. Protein instability and functional defects caused by mutations of dihydro-orotate dehydrogenase in Miller syndrome patients[J]. Bio-sci Rep, 2012, 32(6): 631-639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Roach JC, Glusman G, Smit AF, et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing[J]. Science, 2010, 328(5978): 636-639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Rainger J, Bengani H, Campbell L, et al. Miller (Genée-Wiedemann) syndrome represents a clinically and biochemically distinct subgroup of postaxial acrofacial dysostosis associated with partial deficiency of DHODH[J]. Hum Mol Genet, 2012, 21(18): 3969-3983. [DOI] [PubMed] [Google Scholar]
  • 42. 成琦, 周启星, 韩崑, 等. 羊膜破裂序列征一例[J]. 中华小儿外科杂志, 2015, 36(6): 472-473. [Google Scholar]; Cheng Q, Zhou QX, Han K, et al. Amniotic rupture sequence: a case report[J]. Chin J Pediatr Surg, 2015, 36(6): 472-473. [Google Scholar]
  • 43. Chen CP. Prenatal diagnosis of limb-body wall complex with craniofacial defects, amniotic bands, adhesions and upper limb deficiency[J]. Prenat Diagn, 2001, 21(5): 418-419. [DOI] [PubMed] [Google Scholar]
  • 44. Da Costa LM, Marie I, Leblanc TM. Diamond-Blackfan anemia[J]. Hematology Am Soc Hematol Educ Program, 2021, 2021(1): 353-360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Da Costa L, Leblanc T, Mohandas N. Diamond-Blackfan anemia[J]. Blood, 2020, 136(11): 1262-1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Balasubramanian K, Li B, Krakow D, et al. MED resul-ting from recessively inherited mutations in the gene encoding calcium-activated nucleotidase CANT1[J]. Am J Med Genet A, 2017, 173(9): 2415-2421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Anthony S, Munk R, Skakun W, et al. Multiple epiphy-seal dysplasia[J]. J Am Acad Orthop Surg, 2015, 23(3): 164-172. [DOI] [PubMed] [Google Scholar]
  • 48. Jung SC, Mathew S, Li QW, et al. Spondyloepiphyseal dysplasia congenita with absent femoral head[J]. J Pediatr Orthop B, 2004, 13(2): 63-69. [DOI] [PubMed] [Google Scholar]
  • 49. 李燕虹, 陆艳, 马华梅, 等. COL2A1基因突变所致先天性脊柱骨骺发育不良1例[J]. 中国临床案例成果数据库, 2022, 4(1): E01943. [Google Scholar]; Li YH, Lu Y, Ma HM, et al. A case of congenital spinal epiphyseal dysplasia caused by COL2A1 gene mutation[J]. Chin Med Case Reposit, 2022, 4(1): E01943. [Google Scholar]
  • 50. Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome[J]. Eur J Hum Genet, 2010, 18(1): 8-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Elliott M, Maher ER. Beckwith-Wiedemann syndrome[J]. J Med Genet, 1994, 31(7): 560-564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Unger S, Scherer G, Superti-Furga A. Campomelic dysplasia[M]//Adam MP, Feldman J, Mirzaa GM, et al. GeneReviews. Seattle: University of Washington, 2008. [PubMed] [Google Scholar]
  • 53. Narimatsu K, Iida A, Kobayashi T. Palatoplasty for the patient with campomelic dysplasia—report of a case and review of the literature[J]. Cleft Palate Craniofac J, 2022, 59(1): 132-136. [DOI] [PubMed] [Google Scholar]
  • 54. 李晓雨, 洪梦迪, 戴朴, 等. 下颌骨颜面发育不全伴小头畸形综合征一例[J]. 中国临床案例成果数据库, 2022, 4(1): E00240. [Google Scholar]; Li XY, Hong MD, Dai P, et al. Clinical case analysis of mandibulofacial dysostosis with microcephaly[J]. Chin Med Case Reposit, 2022, 4(1): E00240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Guion-Almeida ML, Zechi-Ceide RM, Vendramini S, et al. A new syndrome with growth and mental retardation, mandibulofacial dysostosis, microcephaly, and cleft palate[J]. Clin Dysmorphol, 2006, 15(3): 171-174. [DOI] [PubMed] [Google Scholar]
  • 56. Lin JL. Nager syndrome: a case report[J]. Pediatr Neonatol, 2012, 53(2): 147-150. [DOI] [PubMed] [Google Scholar]
  • 57. 张晔, 潘博. Nager综合征的研究现状[J]. 医学综述, 2015, 21(10): 1839-1842. [Google Scholar]; Zhang Y, Pan B. Present status of research in Nager syndrome[J]. Med Recapitul, 2015, 21(10): 1839-1842. [Google Scholar]
  • 58. 郑侠, 王红, 董世霄, 等. 新生儿耳—腭—指综合征1型一例[J]. 中华新生儿科杂志, 2020, 35(4): 307-308. [Google Scholar]; Zheng X, Wang H, Dong SX, et al. Otopalatodigital syndrome types 1: a case report[J]. Chin J Neonatol, 2020, 35(4): 307-308. [Google Scholar]
  • 59. Moutton S, Fergelot P, Naudion S, et al. Otopalatodigital spectrum disorders: refinement of the phenotypic and mutational spectrum[J]. J Hum Genet, 2016, 61(8): 693-699. [DOI] [PubMed] [Google Scholar]
  • 60. Fang J, Dagenais SL, Erickson RP, et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome[J]. Am J Hum Genet, 2000, 67(6): 1382-1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Mansour S, Brice GW, Jeffery S, et al. Lymphedema-Distichiasis syndrome[M]//Adam MP, Feldman J, Mir-zaa GM, et al. GeneReviews. Seattle: University of Wa-shington, 2005. [PubMed] [Google Scholar]
  • 62. 张贝贝, 巩纯秀. CHARGE综合征诊疗新进展[J]. 中华实用儿科临床杂志, 2019, 34(14): 1116-1120. [Google Scholar]; Zhang BB, Gong CX. New progress in diagnosis and treatment of CHARGE syndrome[J]. Chin J Appl Clin Pediatr, 2019, 34(14): 1116-1120. [Google Scholar]
  • 63. Hsu P, Ma A, Wilson M, et al. CHARGE syndrome: a review[J]. J Paediatr Child Health, 2014, 50(7): 504-511. [DOI] [PubMed] [Google Scholar]
  • 64. Ruiter EM, Bongers EM, Smeets D, et al. No justification of routine screening for 22q11 deletions in patients with overt cleft palate[J]. Clin Genet, 2003, 64(3): 216-219. [DOI] [PubMed] [Google Scholar]
  • 65. Butcher NJ, Chow EW, Costain G, et al. Functional outcomes of adults with 22q11.2 deletion syndrome[J]. Ge-net Med, 2012, 14(10): 836-843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Carelle-Calmels N, Saugier-Veber P, Girard-Lemaire F, et al. Genetic compensation in a human genomic disorder[J]. N Engl J Med, 2009, 360(12): 1211-1216. [DOI] [PubMed] [Google Scholar]
  • 67. Bogusiak K, Puch A, Arkuszewski P. Goldenhar syndrome: current perspectives[J]. World J Pediatr, 2017, 13(5): 405-415. [DOI] [PubMed] [Google Scholar]
  • 68. Zawora A, Mazur A, Witalis J, et al. The Goldenhar syndrome-description of two cases[J]. Prz Med Uniw Rzesz Inst Leków, 2005, 2: 165-167. [Google Scholar]
  • 69. Mehta B, Nayak C, Savant S, et al. Goldenhar syndrome with unusual features[J]. Indian J Dermatol Venereol Le-prol, 2008, 74(3): 254-256. [DOI] [PubMed] [Google Scholar]
  • 70. Hutchinson DT, Sullivan R. Rubinstein-Taybi syndrome[J]. J Hand Surg Am, 2015, 40(8): 1711-1712. [DOI] [PubMed] [Google Scholar]
  • 71. Hallam TM, Bourtchouladze R. Rubinstein-Taybi syndrome: molecular findings and therapeutic approaches to improve cognitive dysfunction[J]. Cell Mol Life Sci, 2006, 63(15): 1725-1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Roelfsema JH, Peters DJ. Rubinstein-Taybi syndrome: clinical and molecular overview[J]. Expert Rev Mol Med, 2007, 9(23): 1-16. [DOI] [PubMed] [Google Scholar]
  • 73. Wang YR, Xu NX, Wang J, et al. Kabuki syndrome: review of the clinical features, diagnosis and epigenetic mechanisms[J]. World J Pediatr, 2019, 15(6): 528-535. [DOI] [PubMed] [Google Scholar]
  • 74. Ng SB, Bigham AW, Buckingham KJ, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome[J]. Nat Genet, 2010, 42(9): 790-793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Boniel S, Szymańska K, Śmigiel R, et al. Kabuki Syndrome—clinical review with molecular aspects[J]. Ge-nes (Basel), 2021, 12(4): 468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Lambrecht JT, Kreusch T. Examine your orofacial cleft patients for Gorlin-Goltz syndrome[J]. Cleft Palate Craniofac J, 1997, 34(4): 342-350. [DOI] [PubMed] [Google Scholar]
  • 77. Bree AF, Shah MR, BCNS Colloquium Group. Consensus statement from the first international colloquium on basal cell nevus syndrome (BCNS)[J]. Am J Med Genet A, 2011, 155A(9): 2091-2097. [DOI] [PubMed] [Google Scholar]
  • 78. Bresler SC, Padwa BL, Granter SR. Nevoid basal cell carcinoma syndrome (Gorlin syndrome)[J]. Head Neck Pathol, 2016, 10(2): 119-124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Adam MP, Conta J, Bean LJH. Mowat-Wilson syndrome[M]//Adam MP, Feldman J, Mirzaa GM, et al. GeneReviews. Seattle: University of Washington, 2007. [PubMed] [Google Scholar]
  • 80. Birkhoff JC, Huylebroeck D, Conidi A. ZEB2, the Mo-wat-Wilson syndrome transcription factor: confirmations, novel functions, and continuing surprises[J]. Genes (Basel), 2021, 12(7): 1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Bhattacharjee K, Rehman O, Venkatraman V, et al. Crouzon syndrome and the eye: an overview[J]. Indian J Ophthalmol, 2022, 70(7): 2346-2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Pellerin P, Vinchon M, Guerreschi P, et al. Crouzon syndrome anatomy, usefulness of vestibular orientation[J]. J Craniofac Surg, 2022, 33(6): 1914-1923. [DOI] [PubMed] [Google Scholar]
  • 83. Boyle MI, Jespersgaard C, Brøndum-Nielsen K, et al. Cornelia de Lange syndrome[J]. Clin Genet, 2015, 88(1): 1-12. [DOI] [PubMed] [Google Scholar]
  • 84. Kline AD, Moss JF, Selicorni A, et al. Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement[J]. Nat Rev Genet, 2018, 19(10): 649-666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Joubert M, Eisenring JJ, Robb JP, et al. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation[J]. Neurology, 1969, 19(9): 813-825. [DOI] [PubMed] [Google Scholar]
  • 86. Parisi M, Glass I. Joubert Syndrome[M]//Adam MP, Feldman J, Mirzaa GM, et al. GeneReviews. Seattle: University of Washington, 2003. [Google Scholar]
  • 87. Spahiu L, Behluli E, Grajçevci-Uka V, et al. Joubert syndrome: molecular basis and treatment[J]. J Mother Child, 2022, 26(1): 118-123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Lynch DC, Revil T, Schwartzentruber J, et al. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome[J]. Nat Commun, 2014, 5: 4483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Bacrot S, Doyard M, Huber C, et al. Mutations in SNRPB, encoding components of the core splicing machi-nery, cause cerebro-costo-mandibular syndrome[J]. Hum Mutat, 2015, 36(2): 187-190. [DOI] [PubMed] [Google Scholar]
  • 90. Tooley M, Lynch D, Bernier F, et al. Cerebro-costo-mandibular syndrome: clinical, radiological, and genetic fin-dings[J]. Am J Med Genet A, 2016, 170A(5): 1115-1126. [DOI] [PubMed] [Google Scholar]
  • 91. Maas NM, Van Buggenhout G, Hannes F, et al. Genotype-phenotype correlation in 21 patients with Wolf-Hir-schhorn syndrome using high resolution array comparative genome hybridisation (CGH)[J]. J Med Genet, 2008, 45(2): 71-80. [DOI] [PubMed] [Google Scholar]
  • 92. Battaglia A, Carey JC, South ST. Wolf-Hirschhorn syndrome: a review and update[J]. Am J Med Genet C Se-min Med Genet, 2015, 169(3): 216-223. [DOI] [PubMed] [Google Scholar]
  • 93. Bailey R. Wolf-Hirschhorn syndrome: a case study and disease overview[J]. Adv Neonatal Care, 2014, 14(5): 318-321. [DOI] [PubMed] [Google Scholar]
  • 94. Fontanella B, Russolillo G, Meroni G. MID1 mutations in patients with X-linked Opitz G/BBB syndrome[J]. Hum Mutat, 2008, 29(5): 584-594. [DOI] [PubMed] [Google Scholar]
  • 95. Fryburg JS, Lin KY, Golden WL. Chromosome 22q11.2 deletion in a boy with Opitz (G/BBB) syndrome[J]. Am J Med Genet, 1996, 62(3): 274-275. [DOI] [PubMed] [Google Scholar]
  • 96. Robin NH, Opitz JM, Muenke M. Opitz G/BBB syndrome: clinical comparisons of families linked to Xp22 and 22q, and a review of the literature[J]. Am J Med Ge-net, 1996, 62(3): 305-317. [DOI] [PubMed] [Google Scholar]
  • 97. Gazioğlu N, Vural M, Seçkin MS, et al. Meckel-Gruber syndrome[J]. Childs Nerv Syst, 1998, 14(3): 142-145. [DOI] [PubMed] [Google Scholar]
  • 98. Alexiev BA, Lin X, Sun CC, et al. Meckel-Gruber syndrome: pathologic manifestations, minimal diagnostic criteria, and differential diagnosis[J]. Arch Pathol Lab Med, 2006, 130(8): 1236-1238. [DOI] [PubMed] [Google Scholar]
  • 99. Hartill V, Szymanska K, Sharif SM, et al. Meckel-Gruber syndrome: an update on diagnosis, clinical management, and research advances[J]. Front Pediatr, 2017, 5: 244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Au PYB, You J, Caluseriu O, et al. GeneMatcher aids in the identification of a new malformation syndrome with intellectual disability, unique facial dysmorphisms, and skeletal and connective tissue abnormalities caused by de novo variants in HNRNPK[J]. Hum Mutat, 2015, 36(10): 1009-1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Okamoto N. Okamoto syndrome has features overlapping with Au-Kline syndrome and is caused by HNRNPK mutation[J]. Am J Med Genet A, 2019, 179(5): 822-826. [DOI] [PubMed] [Google Scholar]
  • 102. Au PYB, McNiven V, Phillips L, et al. Au-Kline Syndrome[M]//Adam MP, Feldman J, Mirzaa GM, et al. GeneReviews. Seattle: University of Washington, 2019. [PubMed] [Google Scholar]
  • 103. Smith JF, Wayment RO, Cartwright PC, et al. Genitourinary anomalies of pediatric FG syndrome[J]. J Urol, 2007, 178(2): 656-659. [DOI] [PubMed] [Google Scholar]
  • 104. Graham JM Jr, Clark RD, Moeschler JB, et al. Behavioral features in young adults with FG syndrome (Opitz-Kaveggiasyndrome)[J]. Am J Med Genet C Semin Med Ge-net, 2010, 154C(4): 477-485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Graham JM Jr, Schwartz CE. MED12 related disorders[J]. Am J Med Genet A, 2013, 161A(11): 2734-2740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. King JA, Gardner V, Chen H, et al. Neu-Laxova syndrome: pathological evaluation of a fetus and review of the literature[J]. Pediatr Pathol Lab Med, 1995, 15(1): 57-79. [DOI] [PubMed] [Google Scholar]
  • 107. Ni C, Cheng RH, Zhang J, et al. Novel and recurrent PHGDH and PSAT1 mutations in Chinese patients with Neu-Laxova syndrome[J]. Eur J Dermatol, 2019, 29(6): 641-646. [DOI] [PubMed] [Google Scholar]
  • 108. Dwivedi T, Gosavi M. Neu Laxova syndrome[J]. Indian J Pathol Microbiol, 2019, 62(1): 149-152. [DOI] [PubMed] [Google Scholar]
  • 109. Zeng L, Li Z, Pan L, et al. Novel GZF1 pathogenic variants identified in two Chinese patients with Larsen syndrome[J]. Clin Genet, 2021, 99(2): 281-285. [DOI] [PubMed] [Google Scholar]
  • 110. Sajnani AK, Yiu CK, King NM. Larsen syndrome: a review of the literature and case report[J]. Spec Care Dentist, 2010, 30(6): 255-260. [DOI] [PubMed] [Google Scholar]
  • 111. Bicknell LS, Morgan T, Bonafé L, et al. Mutations in FLNB cause boomerang dysplasia[J]. J Med Genet, 2005, 42(7): e43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Kantaputra PN, Dejkhamron P, Intachai W, et al. Juberg-Hayward syndrome is a cohesinopathy, caused by mutation in ESCO2[J]. Eur J Orthod, 2020, 43(1): 45-50. [DOI] [PubMed] [Google Scholar]
  • 113. Kantaputra PN, Dejkhamron P, Tongsima S, et al. Juberg-Hayward syndrome and Roberts syndrome are alle-lic, caused by mutations in ESCO2[J]. Arch Oral Biol, 2020, 119: 104918. [DOI] [PubMed] [Google Scholar]
  • 114. Vega H, Trainer AH, Gordillo M, et al. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome[J]. J Med Ge-net, 2010, 47(1): 30-37. [DOI] [PubMed] [Google Scholar]
  • 115. Mfarej MG, Skibbens RV. An ever-changing landscape in Roberts syndrome biology: implications for macromolecular damage[J]. PLoS Genet, 2020, 16(12): e1009219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. 周经, 杨晓楠, 祁佐良. Roberts综合征研究进展[J]. 中华整形外科杂志, 2018, 34(8): 676-680. [Google Scholar]; Zhou J, Yang XN, Qi ZL. Roberts syndrome[J]. Chin J Plast Surg, 2018, 34(8): 676-680. [Google Scholar]
  • 117. Waldenmaier C, Aldenhoff P, Klemm T. The Roberts’ syndrome[J]. Hum Genet, 1978, 40(3): 345-349. [DOI] [PubMed] [Google Scholar]
  • 118. Bertola DR, Hsia G, Alvizi L, et al. Richieri-Costa-Pe-reira syndrome: expanding its phenotypic and genotypic spectrum[J]. Clin Genet, 2018, 93(4): 800-811. [DOI] [PubMed] [Google Scholar]
  • 119. Pardo MP, Santos GLD, Carvalho IMM, et al. Craniofacial features in richieri-costa-pereira syndrome[J]. Cleft Palate Craniofac J, 2021, 58(11): 1370-1375. [DOI] [PubMed] [Google Scholar]
  • 120. Williams GM, Brady R. Patau Syndrome[M]//StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2023. [PubMed] [Google Scholar]
  • 121. Schlosser AS, Costa GJC, Silva HSD, et al. Holoprosencephaly in Patau syndrome[J]. Rev Paul Pediatr, 2023, 41: e2022027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122. Rosa RF, Rosa RC, Zen PR, et al. Trisomy 18: review of the clinical, etiologic, prognostic, and ethical aspects[J]. Rev Paul Pediatr, 2013, 31(1): 111-120. [DOI] [PubMed] [Google Scholar]
  • 123. Crawford D, Dearmun A. Edwards’ syndrome[J]. Nurs Child Young People, 2016, 28(10): 17. [DOI] [PubMed] [Google Scholar]
  • 124. Read AP, Newton VE. Waardenburg syndrome[J]. J Med Genet, 1997, 34(8): 656-665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125. Pingault V, Ente D, Dastot-Le Moal F, et al. Review and update of mutations causing Waardenburg syndrome[J]. Hum Mutat, 2010, 31(4): 391-406. [DOI] [PubMed] [Google Scholar]
  • 126. Alessandri JL, Attali T, Brayer C, et al. Fryns syndrome. Report on 3 new cases[J]. Arch Pediatr, 2007, 14(7): 903-907. [DOI] [PubMed] [Google Scholar]
  • 127. Slavotinek A. Fryns Syndrome[M]//Adam MP, Feldman J, Mirzaa GM, et al. GeneReviews. Seattle: University of Washington, 2007. [PubMed] [Google Scholar]
  • 128. 中国医师协会医学遗传医师分会临床遗传学组, 中华医学会医学遗传学分会临床遗传学组, 中华预防医学会出生缺陷预防与控制专业委员会遗传病防控学组, 等. 脆性X综合征的临床实践指南[J]. 中华医学遗传学杂志, 2022, 39(11): 1181-1186. [Google Scholar]; Clinical Genetics Group, Medical Geneticist Branch, Chinese Medical Doctor Association; Clinical Genetics Group, Medical Genetics Branch, Chinese Medical Asso-ciation; Genetic Disease Prevention and Control Group, Professional Committee for Birth Defect Prevention and Control, Chinese Preventive Medicine Association; et al. Clinical practice guidelines for Fragile X syndrome[J]. Chin J Med Genet, 2022, 39(11): 1181-1186. [DOI] [PubMed] [Google Scholar]
  • 129. Hagerman RJ, Berry-Kravis E, Hazlett HC, et al. Fragile X syndrome[J]. Nat Rev Dis Primers, 2017, 3: 17065. [DOI] [PubMed] [Google Scholar]
  • 130. 车凤玉, 贺春霞, 张李钰, 等. 一个Smith-Lemli-Opitz综合征家系的临床特征和基因变异分析[J]. 中华医学遗传学杂志, 2021, 38(11): 1114-1119. [DOI] [PubMed] [Google Scholar]; Che FY, He CX, Zhang LY, et al. Clinical features and genetic testing of a Chinese pedigree affected with Smi-th-Lemli-Opitz syndrome[J]. Chin J Med Genet, 2021, 38(11): 1114-1119. [DOI] [PubMed] [Google Scholar]
  • 131. Kelley RI, Hennekam RC. The Smith-lemli-opitz syndrome[J]. J Med Genet, 2000, 37(5): 321-335. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from West China Journal of Stomatology are provided here courtesy of Editorial Department of West China Journal of Stomatology

RESOURCES