Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Apr;398:507–521. doi: 10.1113/jphysiol.1988.sp017054

The influence of pH on membrane conductance and intercellular resistance in the rat lens.

S Bassnett 1, G Duncan 1
PMCID: PMC1191784  PMID: 3392681

Abstract

1. The conductance of the rat lens was measured using a two-internal-microelectrode technique. The voltage response to a step of current consisted of two components arising from bulk and membrane resistance respectively. 2. The potassium permeability was calculated by applying Goldman theory to 86Rb+ efflux data. 3. The internal pH (pHi) and internal free calcium (pCai) were measured directly using single- and double-barrelled ion-sensitive microelectrodes. 4. Lens pHi was 6.9 in control solution (external pH, pHo = 7.3) and was reduced on lowering pHo. The presence of propionate or 100% CO2 in the external solution accentuated this effect. 5. Internal acidification was accompanied by a depolarization of membrane potential, an increase in membrane and cell-to-cell resistance and a decrease in potassium permeability. The acidification had no effect on pCai. 6. The intracellular pH was increased by perifusing with trimethylamine or NH4Cl. Both treatments induced a membrane depolarization with little change in potassium permeability. Subsequent removal of NH4Cl led to a sustained decrease in pHi. 7. In every case where pHi decreased, the changes in membrane potential and conductance could be explained largely on the basis of a decrease in potassium permeability. The concomitant increase in cell-to-cell resistance was less pronounced and probably insufficient to uncouple the lens system.

Full text

PDF
507

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKER B., COTLIER E. Distribution of rubidium-86 accumulated in the rabbit lens. Invest Ophthalmol. 1962 Oct;1:642–645. [PubMed] [Google Scholar]
  2. Bassnett S., Duncan G. Direct measurement of pH in the rat lens by ion-sensitive microelectrodes. Exp Eye Res. 1985 Apr;40(4):585–590. doi: 10.1016/0014-4835(85)90080-6. [DOI] [PubMed] [Google Scholar]
  3. Boron W. F., De Weer P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol. 1976 Jan;67(1):91–112. doi: 10.1085/jgp.67.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dawson C. M., Croghan P. C., Scott A. M., Bangham J. A. Potassium and rubidium permeability and potassium conductance of the beta-cell membrane in mouse islets of Langerhans. Q J Exp Physiol. 1986 Apr;71(2):205–222. doi: 10.1113/expphysiol.1986.sp002979. [DOI] [PubMed] [Google Scholar]
  5. Delamere N. A., Duncan G. A comparison of ion concentrations, potentials and conductances of amphibian, bovine and cephalopod lenses. J Physiol. 1977 Oct;272(1):167–186. doi: 10.1113/jphysiol.1977.sp012039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duncan G., Jacob T. J. Calcium and the physiology of cataract. Ciba Found Symp. 1984;106:132–152. doi: 10.1002/9780470720875.ch8. [DOI] [PubMed] [Google Scholar]
  7. Duncan G. The site of the ion restricting membranes in the toad lens. Exp Eye Res. 1969 Oct;8(4):406–412. doi: 10.1016/s0014-4835(69)80006-0. [DOI] [PubMed] [Google Scholar]
  8. Hightower K. R., Duncan G., Harrison S. E. Intracellular calcium concentration and calcium transport in the rabbit lens. Invest Ophthalmol Vis Sci. 1985 Jul;26(7):1032–1034. [PubMed] [Google Scholar]
  9. Hightower K. R., Harrison S. E., Unakar N. J., Tsui J. Effects of intracellular calcium on lens membrane permeability. Curr Eye Res. 1985 Jun;4(6):693–701. doi: 10.3109/02713688509017664. [DOI] [PubMed] [Google Scholar]
  10. Jacob T. J. Raised intracellular free calcium within the lens causes opacification and cellular uncoupling in the frog. J Physiol. 1983 Aug;341:595–601. doi: 10.1113/jphysiol.1983.sp014826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuszak J., Maisel H., Harding C. V. Gap junctions of chick lens fiber cells. Exp Eye Res. 1978 Oct;27(4):495–498. doi: 10.1016/0014-4835(78)90026-x. [DOI] [PubMed] [Google Scholar]
  12. Lucas V. A., Bassnett S., Duncan G., Stewart S., Croghan P. C. Membrane conductance and potassium permeability of the rat lens. Q J Exp Physiol. 1987 Jan;72(1):81–93. doi: 10.1113/expphysiol.1987.sp003057. [DOI] [PubMed] [Google Scholar]
  13. Lucas V. A., Duncan G., Davies P. Membrane permeability characteristics of perfused human senile cataractous lenses. Exp Eye Res. 1986 Feb;42(2):151–165. doi: 10.1016/0014-4835(86)90039-4. [DOI] [PubMed] [Google Scholar]
  14. Marban E., Rink T. J., Tsien R. W., Tsien R. Y. Free calcium in heart muscle at rest and during contraction measured with Ca2+ -sensitive microelectrodes. Nature. 1980 Aug 28;286(5776):845–850. doi: 10.1038/286845a0. [DOI] [PubMed] [Google Scholar]
  15. Mathias R. T., Rae J. L., Eisenberg R. S. The lens as a nonuniform spherical syncytium. Biophys J. 1981 Apr;34(1):61–83. doi: 10.1016/S0006-3495(81)84837-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meech R. W., Thomas R. C. The effect of calcium injection on the intracellular sodium and pH of snail neurones. J Physiol. 1977 Mar;265(3):867–879. doi: 10.1113/jphysiol.1977.sp011749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller T. M., Goodenough D. A. Evidence for two physiologically distinct gap junctions expressed by the chick lens epithelial cell. J Cell Biol. 1986 Jan;102(1):194–199. doi: 10.1083/jcb.102.1.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peracchia C., Girsch S. J., Bernardini G., Peracchia L. L. Lens junctions are communicating junctions. Curr Eye Res. 1985 Nov;4(11):1155–1169. doi: 10.3109/02713688509003362. [DOI] [PubMed] [Google Scholar]
  19. Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of hydrogen ions. J Cell Biol. 1980 Dec;87(3 Pt 1):719–727. doi: 10.1083/jcb.87.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rae J. L., Thomson R. D., Eisenberg R. S. The effect of 2-4 dinitrophenol on cell to cell communication in the frog lens. Exp Eye Res. 1982 Dec;35(6):597–609. doi: 10.1016/s0014-4835(82)80073-0. [DOI] [PubMed] [Google Scholar]
  21. Rink T. J., Tsien R. Y., Warner A. E. Free calcium in Xenopus embryos measured with ion-selective microelectrodes. Nature. 1980 Feb 14;283(5748):658–660. doi: 10.1038/283658a0. [DOI] [PubMed] [Google Scholar]
  22. Rose B., Rick R. Intracellular pH, intracellular free Ca, and junctional cell-cell coupling. J Membr Biol. 1978 Dec 29;44(3-4):377–415. doi: 10.1007/BF01944230. [DOI] [PubMed] [Google Scholar]
  23. Schauf C. L., Davis F. A. Sensitivity of the sodium and potassium channels of Myxicola giant axons to changes in external pH. J Gen Physiol. 1976 Feb;67(2):185–195. doi: 10.1085/jgp.67.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schuetze S. M., Goodenough D. A. Dye transfer between cells of the embryonic chick lens becomes less sensitive to CO2 treatment with development. J Cell Biol. 1982 Mar;92(3):694–705. doi: 10.1083/jcb.92.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spray D. C., White R. L., de Carvalho A. C., Harris A. L., Bennett M. V. Gating of gap junction channels. Biophys J. 1984 Jan;45(1):219–230. doi: 10.1016/S0006-3495(84)84150-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thomas R. C. Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J Physiol. 1984 Sep;354:3P–22P. doi: 10.1113/jphysiol.1984.sp015397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wanke E., Carbone E., Testa P. L. K+ conductance modified by a titratable group accessible to protons from the intracellular side of the squid axon membrane. Biophys J. 1979 May;26(2):319–324. doi: 10.1016/S0006-3495(79)85251-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de Hemptinne A., Marrannes R., Vanheel B. Influence of organic acids on intracellular pH. Am J Physiol. 1983 Sep;245(3):C178–C183. doi: 10.1152/ajpcell.1983.245.3.C178. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES