Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Jun;400:459–479. doi: 10.1113/jphysiol.1988.sp017132

A microelectrode study of the mechanisms of L-lactate entry into and release from frog sartorius muscle.

M J Mason 1, R C Thomas 1
PMCID: PMC1191819  PMID: 3262155

Abstract

1. Changes in intracellular pH and intracellular anion levels were monitored in frog sartorius muscle fibres during exposure to extracellular L-lactate, using ion-sensitive microelectrodes. 2. Resting intracellular pH (pHi) in 20 mmol l-1 HEPES buffer was 7.18 +/- 0.015 (S.E. of mean, n = 62). Exposure to an extracellular solution at pH 6.5 buffered with 20 mmol l-1 3-(N-morpholino)propanesulphonic acid (MOPS) resulted in a slow intracellular acidification. 3. A reversible decrease in pHi and an increase in intracellular anion levels was observed when L-lactate replaced chloride in equimolar amounts. The increase in intracellular anion level is consistent with intracellular accumulation of L-lactate ion. 4. The rate and steady-state change in pHi and anion level was a function of both extracellular pH and L-lactate concentration, providing evidence for the coupled movement of lactate and proton equivalents. 5. The initial rate of uptake of L-lactate, as measured by the change of pHi, was a non-linear function of the extracellular L-lactate concentration at extracellular pH 6.8 and 7.35. 6. No saturation was observed with concentrations of L-lactate between 5 and 60 mmol l-1 at pH 7.35 and 2.5 and 40 mmol l-1 at pH 6.8. 7. The non-linear relationship between the initial rate of change in pHi and extracellular L-lactate was well fitted by a curve defining uptake as the sum of a carrier process displaying Michaelis-Menten kinetics and a passive diffusion component. The apparent Km of the carrier was 10 mmol l-1 at pHo 7.35 and 4 mmol l-1 at pHo 6.8. 8. The initial rate of change of pHi in the presence of L-lactate was significantly inhibited 39.1 +/- 6.2% by 2-5 mmol l-1 alpha-cyano-4-hydroxycinnamate (n = 9; P less than 0.05, paired t test). 9. alpha-Cyano-4-hydroxycinnamate had no detectable effect on the initial rate of change of pHi induced by propionate exposure. 10. The initial rate of change of pHi induced by L-lactate was not affected by 20-100 mumol l-1 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS). 11. We conclude that L-lactate crosses the membrane of the frog sartorius muscle with proton equivalents via (1) a carrier-mediated process, and (2) passive diffusion of lactic acid. In the physiological range of L-lactate concentrations and pH the transport process dominates.

Full text

PDF
459

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie R. F., Putnam R. W., Roos A. The intracellular pH of frog skeletal muscle: its regulation in isotonic solutions. J Physiol. 1983 Dec;345:175–187. doi: 10.1113/jphysiol.1983.sp014973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aickin C. C., Thomas R. C. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J Physiol. 1977 Dec;273(1):295–316. doi: 10.1113/jphysiol.1977.sp012095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bendall J. R., Taylor A. A. The Meyerhof quotient and the synthesis of glycogen from lactate in frog and rabbit muscle. Biochem J. 1970 Aug;118(5):887–893. doi: 10.1042/bj1180887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolton T. B., Vaughan-Jones R. D. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle. J Physiol. 1977 Sep;270(3):801–833. doi: 10.1113/jphysiol.1977.sp011983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  6. Curtin N. A. Buffer power and intracellular pH of frog sartorius muscle. Biophys J. 1986 Nov;50(5):837–841. doi: 10.1016/S0006-3495(86)83524-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deuticke B., Beyer E., Forst B. Discrimination of three parallel pathways of lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties. Biochim Biophys Acta. 1982 Jan 4;684(1):96–110. doi: 10.1016/0005-2736(82)90053-0. [DOI] [PubMed] [Google Scholar]
  8. Dubinsky W. P., Racker E. The mechanism of lactate transport in human erythrocytes. J Membr Biol. 1978 Dec 8;44(1):25–36. doi: 10.1007/BF01940571. [DOI] [PubMed] [Google Scholar]
  9. Fafournoux P., Demigné C., Rémésy C. Carrier-mediated uptake of lactate in rat hepatocytes. Effects of pH and possible mechanisms for L-lactate transport. J Biol Chem. 1985 Jan 10;260(1):292–299. [PubMed] [Google Scholar]
  10. Fitts R. H., Holloszy J. O. Lactate and contractile force in frog muscle during development of fatigue and recovery. Am J Physiol. 1976 Aug;231(2):430–433. doi: 10.1152/ajplegacy.1976.231.2.430. [DOI] [PubMed] [Google Scholar]
  11. Fletcher W. M. Lactic acid in amphibian muscle. J Physiol. 1907 Mar 27;35(4):247–309. doi: 10.1113/jphysiol.1907.sp001194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Halestrap A. P., Denton R. M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J. 1974 Feb;138(2):313–316. doi: 10.1042/bj1380313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Halestrap A. P. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem J. 1976 May 15;156(2):193–207. doi: 10.1042/bj1560193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hirche H. J., Hombach V., Langohr H. D., Wacker U., Busse J. Lactic acid permeation rate in working gastrocnemii of dogs during metabolic alkalosis and acidosis. Pflugers Arch. 1975;356(3):209–222. doi: 10.1007/BF00583833. [DOI] [PubMed] [Google Scholar]
  17. Hirche H., Hombach V., Langohr H. D., Wacker U. Lactic acid permeation rate in working skeletal muscle during alkalosis and acidosis. Pflugers Arch. 1972;332(Suppl):R73–R73. [PubMed] [Google Scholar]
  18. Hutter O. F., Warner A. E. The effect of pH on the 36-Cl efflux from frog skeletal muscle. J Physiol. 1967 Apr;189(3):427–443. doi: 10.1113/jphysiol.1967.sp008177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jorfeldt L., Juhlin-Dannfelt A., Karlsson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978 Mar;44(3):350–352. doi: 10.1152/jappl.1978.44.3.350. [DOI] [PubMed] [Google Scholar]
  20. KARPATKIN S., HELMREICH E., CORI C. F. REGULATION OF GLYCOLYSIS IN MUSCLE. II. EFFECT OF STIMULATION AND EPINEPHRINE IN ISOLATED FROG SARTORIUS MUSCLE. J Biol Chem. 1964 Oct;239:3139–3145. [PubMed] [Google Scholar]
  21. Koch A., Webster B., Lowell S. Cellular uptake of L-lactate in mouse diaphragm. Biophys J. 1981 Dec;36(3):775–796. doi: 10.1016/S0006-3495(81)84765-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leeks D. R., Halestrap A. P. Chloride-independent transport of pyruvate and lactate across the erythrocyte membrane [proceedings]. Biochem Soc Trans. 1978;6(6):1363–1366. doi: 10.1042/bst0061363. [DOI] [PubMed] [Google Scholar]
  23. Mainwood G. W., Worsley-Brown P. The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle. J Physiol. 1975 Aug;250(1):1–22. doi: 10.1113/jphysiol.1975.sp011040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mason M. J., Mainwood G. W., Thoden J. S. The influence of extracellular buffer concentration and propionate on lactate efflux from frog muscle. Pflugers Arch. 1986 May;406(5):472–479. doi: 10.1007/BF00583369. [DOI] [PubMed] [Google Scholar]
  25. Moll W., Girard H., Gros G. Facilitated diffusion of lactic acid in the guinea-pig placenta. Pflugers Arch. 1980 Jun;385(3):229–238. doi: 10.1007/BF00647462. [DOI] [PubMed] [Google Scholar]
  26. Monson J. P., Smith J. A., Cohen R. D., Iles R. A. Evidence for a lactate transporter in the plasma membrane of the rat hepatocyte. Clin Sci (Lond) 1982 Apr;62(4):411–420. doi: 10.1042/cs0620411. [DOI] [PubMed] [Google Scholar]
  27. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  28. Roos A. Intracellular pH and distribution of weak acids across cell membranes. A study of D- and L-lactate and of DMO in rat diaphragm. J Physiol. 1975 Jul;249(1):1–25. doi: 10.1113/jphysiol.1975.sp011000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spencer T. L., Lehninger A. L. L-lactate transport in Ehrlich ascites-tumour cells. Biochem J. 1976 Feb 15;154(2):405–414. doi: 10.1042/bj1540405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steinhagen C., Hirche H. J., Nestle H. W., Bovenkamp U., Hosselmann I. The interstitial pH of the working gastrocnemius muscle of the dog. Pflugers Arch. 1976 Dec 28;367(2):151–156. doi: 10.1007/BF00585151. [DOI] [PubMed] [Google Scholar]
  31. Thomas R. C. Comparison of the Na+ and H+ pumps in a snail neurone [proceedings]. J Physiol. 1976 Dec;263(1):212P–213P. [PubMed] [Google Scholar]
  32. Trivedi B., Danforth W. H. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem. 1966 Sep 10;241(17):4110–4112. [PubMed] [Google Scholar]
  33. Woodbury J. W., Miles P. R. Anion conductance of frog muscle membranes: one channel, two kinds of pH dependence. J Gen Physiol. 1973 Sep;62(3):324–353. doi: 10.1085/jgp.62.3.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. de Hemptinne A., Marrannes R., Vanheel B. Influence of organic acids on intracellular pH. Am J Physiol. 1983 Sep;245(3):C178–C183. doi: 10.1152/ajpcell.1983.245.3.C178. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES