Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Aug;402:555–564. doi: 10.1113/jphysiol.1988.sp017221

Chloride ion transport into pig jejunal brush-border membrane vesicles.

G W Forsyth 1, S E Gabriel 1
PMCID: PMC1191908  PMID: 2466986

Abstract

1. This study was carried out to determine the types and activities of carrier proteins which transport the chloride ion in pig jejunal brush-border membranes, with an emphasis on studying the properties of chloride conductance activity in vesicles prepared from these membranes. 2. Sodium-chloride co-transport activity was not detected in this tissue. A sodium-proton antiport with typical amiloride sensitivity was present. An anion exchanger linking chloride to hydroxyl or bicarbonate ions was also found in the pig jejunal brush-border membrane vesicles. 3. Chloride conductance activity in this system was specifically dependent on the buffering agents used for vesicle preparation. Conductance activity could not be demonstrated in vesicles prepared in imidazolium acetate or in HEPES-Tris buffers. HEPES-tetramethylammonium buffering of vesicles in the chloride uptake system produced a significant conductance response to a potassium gradient plus valinomycin. 4. Chloride conductance showed saturable kinetics with respect to substrate concentration, with a Michaelis-Menten constant (Km) of approximately 116 mM and a maximum velocity (Vmax) of 132 nmol (mg protein)-1 min-1. 5. Preliminary screening of potential inhibitors of chloride conductance showed only minimal inhibitor effects of SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-sulphonic acid), anthracene-9-carboxylate, N-phenylanthranilate and piretanide. 6. The conductance activity in pig jejunal vesicles appears to have stringent buffer requirements, and to be relatively insensitive to the effects of reported conductance inhibitors.

Full text

PDF
555

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Di Stefano A., Wittner M., Schlatter E., Lang H. J., Englert H., Greger R. Diphenylamine-2-carboxylate, a blocker of the Cl(-)-conductive pathway in Cl(-)-transporting epithelia. Pflugers Arch. 1985;405 (Suppl 1):S95–100. doi: 10.1007/BF00581787. [DOI] [PubMed] [Google Scholar]
  3. Fan C. C., Faust R. G., Powell D. W. Coupled sodium-chloride transport by rabbit ileal brush-border membrane vesicles. Am J Physiol. 1983 Apr;244(4):G375–G385. doi: 10.1152/ajpgi.1983.244.4.G375. [DOI] [PubMed] [Google Scholar]
  4. Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
  5. Knickelbein R., Aronson P. S., Atherton W., Dobbins J. W. Sodium and chloride transport across rabbit ileal brush border. I. Evidence for Na-H exchange. Am J Physiol. 1983 Oct;245(4):G504–G510. doi: 10.1152/ajpgi.1983.245.4.G504. [DOI] [PubMed] [Google Scholar]
  6. Knickelbein R., Aronson P. S., Schron C. M., Seifter J., Dobbins J. W. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling. Am J Physiol. 1985 Aug;249(2 Pt 1):G236–G245. doi: 10.1152/ajpgi.1985.249.2.G236. [DOI] [PubMed] [Google Scholar]
  7. Liedtke C. M., Hopfer U. Mechanism of Cl- translocation across small intestinal brush-border membrane. I. Absence of Na+-Cl- cotransport. Am J Physiol. 1982 Mar;242(3):G263–G271. doi: 10.1152/ajpgi.1982.242.3.G263. [DOI] [PubMed] [Google Scholar]
  8. Liedtke C. M., Hopfer U. Mechanism of Cl- translocation across small intestinal brush-border membrane. II. Demonstration of Cl--OH- exchange and Cl- conductance. Am J Physiol. 1982 Mar;242(3):G272–G280. doi: 10.1152/ajpgi.1982.242.3.G272. [DOI] [PubMed] [Google Scholar]
  9. Maenz D. D., Forsyth G. W. Ricinoleate and deoxycholate are calcium ionophores in jejunal brush border vesicles. J Membr Biol. 1982;70(2):125–133. doi: 10.1007/BF01870222. [DOI] [PubMed] [Google Scholar]
  10. Naftalin R. J., Simmons N. L. The effects of theophylline and choleragen on sodium and chloride ion movements within isolated rabbit ileum. J Physiol. 1979 May;290(2):331–350. doi: 10.1113/jphysiol.1979.sp012774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nellans H. N., Frizzell R. A., Schultz S. G. Coupled sodium-chloride influx across the brush border of rabbit ileum. Am J Physiol. 1973 Aug;225(2):467–475. doi: 10.1152/ajplegacy.1973.225.2.467. [DOI] [PubMed] [Google Scholar]
  12. Warnock D. G., Yee V. J. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex. Coupling to proton gradients and K+ diffusion potentials. J Clin Invest. 1981 Jan;67(1):103–115. doi: 10.1172/JCI110002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zeuthen T., Ramos M., Ellory J. C. Inhibition of active chloride transport by piretanide. Nature. 1978 Jun 22;273(5664):678–680. doi: 10.1038/273678a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES