Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Aug;402:579–593. doi: 10.1113/jphysiol.1988.sp017223

Brain fluid calcium concentration and response to acute hypercalcaemia during development in the rat.

H C Jones 1, R F Keep 1
PMCID: PMC1191910  PMID: 3236250

Abstract

1. In vivo measurements of plasma, cerebrospinal fluid (CSF) and brain interstitial fluid (ISF) ionic Ca2+ concentrations ([Ca2+]) have been made in anaesthetized rats aged between 19 days gestation and adult using calcium-selective microelectrodes. Total calcium concentration ([ Ca]) has also been determined in plasma and CSF samples by atomic absorption spectrometry. 2. Under control conditions, plasma, CSF and ISF [Ca2+] showed a small, but significant, decrease with age. Plasma and CSF, but not ISF, showed a transient hypocalcaemia at birth. After birth there were no significant differences between plasma, CSF and ISF [Ca2+], except in adult rats where CSF [Ca2+] was significantly lower than plasma [Ca2+]. The age-related changes in CSF and ISF [Ca2+] were small and it is uncertain as to whether they may have any functional significance. 3. Under control conditions, plasma and CSF [Ca] also declined with age. The fall in plasma [Ca] paralleled the changes in plasma [Ca2+]. The decrease in CSF [Ca] was steeper than that in [Ca2+] and indicated a higher proportion of protein-bound or complexed calcium in the CSF of young when compared to old rats. 4. Acute plasma hypercalcaemia was induced by intramuscular injections of calcium gluconate and consequent changes in CSF or ISF [Ca2+] were monitored in vivo. There was very weak regulation of CSF and ISF [Ca2+] at 21 days gestation, which may reflect placental control over fetal plasma calcium. Soon after birth there was good regulation in both ISF and CSF [Ca2+]. CSF [Ca] was also measured during hypercalcaemia in samples from post-natal rats and there was similar regulation to that in CSF [Ca2+]. 5. It is concluded that under control conditions, during rat development, CSF and ISF [Ca2+] closely follow changes in plasma [Ca2+], but that soon after birth homeostatic mechanisms develop to prevent large fluctuations in brain fluid calcium.

Full text

PDF
579

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amtorp O., Sorensen S. C. The ontogenetic development of concentration differences for protein and ions between plasma and cerebrospinal fluid in rabbits and rats. J Physiol. 1974 Dec;243(2):387–400. doi: 10.1113/jphysiol.1974.sp010759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barkai A. I., Meltzer H. L. Regulation of calcium entry into the extracellular environment of the rat brain. J Neurosci. 1982 Sep;2(9):1322–1328. doi: 10.1523/JNEUROSCI.02-09-01322.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bass N. H., Lundborg P. Drug infusion into the spinal subarachnoid space of unanaesthetized rats during early postnatal life: a technique for the study of brain development. Acta Pharmacol Toxicol (Copenh) 1973;32(3):294–303. doi: 10.1111/j.1600-0773.1973.tb01474.x. [DOI] [PubMed] [Google Scholar]
  4. Bito L. Z., Myers R. E. The ontogenesis of haematoencephalic cation transport processes in the rhesus monkey. J Physiol. 1970 May;208(1):153–170. doi: 10.1113/jphysiol.1970.sp009111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradbury M. W., Crowder J., Desai S., Reynolds J. M., Reynolds M., Saunders N. R. Electrolytes and water in the brain and cerebrospinal fluid of the foetal sheep and guinea-pig. J Physiol. 1972 Dec;227(2):591–610. doi: 10.1113/jphysiol.1972.sp010049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cameron A. T., Moorhouse V. H. The relation between plasma and cerebrospinal fluid calcium. J Physiol. 1937 Oct 18;91(1):90–100. doi: 10.1113/jphysiol.1937.sp003546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Care A. D., Ross R., Pickard D. W., Weatherley A. J., Garel J. M., Manning R. M., Allgrove J., Papapoulos S., O'Riordan J. L. Calcium homeostasis in the fetal pig. J Dev Physiol. 1982 Apr;4(2):85–106. [PubMed] [Google Scholar]
  8. DONAHUE S., PAPPAS G. D. The fine structure of capillaries in the cerebral cortex of the rat at various stages of development. Am J Anat. 1961 May;108:331–347. doi: 10.1002/aja.1001080307. [DOI] [PubMed] [Google Scholar]
  9. Durand D., Dalle M., Barlet J. P. Plasma calcium homeostasis in the guinea pig during the perinatal period. Biol Neonate. 1982;42(3-4):120–126. doi: 10.1159/000241585. [DOI] [PubMed] [Google Scholar]
  10. Dziegielewska K. M., Evans C. A., Lai P. C., Lorscheider F. L., Malinowska D. H., Møllgård K., Saunders N. R. Proteins in cerebrospinal fluid and plasma of fetal rats during development. Dev Biol. 1981 Apr 15;83(1):193–200. doi: 10.1016/s0012-1606(81)80024-3. [DOI] [PubMed] [Google Scholar]
  11. Ferguson R. K., Woodbury D. M. Penetration of 14C-inulin and 14C-sucrose into brain, cerebrospinal fluid, and skeletal muscle of developing rats. Exp Brain Res. 1969;7(3):181–194. doi: 10.1007/BF00239028. [DOI] [PubMed] [Google Scholar]
  12. Garel J. M., Dumont C., Barlet J. P., Care A. D. Fetal-maternal plasma calcium relationships in rat and sheep. J Physiol (Paris) 1972 Dec;64(4):387–398. [PubMed] [Google Scholar]
  13. Goldstein D. A., Romoff M., Bogin E., Massry S. G. Relationship between the concentrations of calcium and phosphorus in blood and cerebrospinal fluid. J Clin Endocrinol Metab. 1979 Jul;49(1):58–62. doi: 10.1210/jcem-49-1-58. [DOI] [PubMed] [Google Scholar]
  14. Graziani L. J., Kaplan R. K., Escriva A., Katzman R. Calcium flux into CSF during ventricular and ventriculocisternal perfusion. Am J Physiol. 1967 Sep;213(3):629–636. doi: 10.1152/ajplegacy.1967.213.3.629. [DOI] [PubMed] [Google Scholar]
  15. HELD D., FENCL V., PAPPENHEIMER J. R. ELECTRICAL POTENTIAL OF CEREBROSPINAL FLUID. J Neurophysiol. 1964 Sep;27:942–959. doi: 10.1152/jn.1964.27.5.942. [DOI] [PubMed] [Google Scholar]
  16. Herbert F. K. The total and diffusible calcium of serum and the calcium of cerebrospinal fluid in human cases of hypocalcaemia and hypercalcaemia. Biochem J. 1933;27(6):1978–1991. doi: 10.1042/bj0271978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johanson C. E., Allen J., Withrow C. D. Regulation of pH and HCO3 in brain and CSF of the developing mammalian central nervous system. Brain Res. 1988 Feb 1;466(2):255–264. doi: 10.1016/0165-3806(88)90051-x. [DOI] [PubMed] [Google Scholar]
  18. Jones H. C., Keep R. F. The control of potassium concentration in the cerebrospinal fluid and brain interstitial fluid of developing rats. J Physiol. 1987 Feb;383:441–453. doi: 10.1113/jphysiol.1987.sp016419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KATZMAN R., LEIDERMAN P. Brain potassium exchange in normal adult and immature rats. Am J Physiol. 1953 Nov;175(2):263–270. doi: 10.1152/ajplegacy.1953.175.2.263. [DOI] [PubMed] [Google Scholar]
  20. Keep R. F., Jones H. C., Cawkwell R. D. A morphometric analysis of the development of the fourth ventricle choroid plexus in the rat. Brain Res. 1986 Jun;392(1-2):77–85. doi: 10.1016/0165-3806(86)90234-8. [DOI] [PubMed] [Google Scholar]
  21. LEUSEN I. The influence of calcium, potassium and magnesium ions in cerebrospinal fluid on vasomotor system. J Physiol. 1949 Dec;110(3-4):319–329. doi: 10.1113/jphysiol.1949.sp004441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Larsen M. J., Richards A., Fejerskov O. Effect of intraperitoneally injected fluoride on plasma calcium in suckling and adult rats. Calcif Tissue Int. 1981;33(5):541–544. doi: 10.1007/BF02409486. [DOI] [PubMed] [Google Scholar]
  23. Murphy V. A., Smith Q. R., Rapoport S. I. Homeostasis of brain and cerebrospinal fluid calcium concentrations during chronic hypo- and hypercalcemia. J Neurochem. 1986 Dec;47(6):1735–1741. doi: 10.1111/j.1471-4159.1986.tb13082.x. [DOI] [PubMed] [Google Scholar]
  24. Nicholson C. Modulation of extracellular calcium and its functional implications. Fed Proc. 1980 Apr;39(5):1519–1523. [PubMed] [Google Scholar]
  25. Somjen G. G., Allen B. W., Balestrino M., Aitken P. G. Pathophysiology of pH and Ca2+ in bloodstream and brain. Can J Physiol Pharmacol. 1987 May;65(5):1078–1085. doi: 10.1139/y87-169. [DOI] [PubMed] [Google Scholar]
  26. Stewart P. A., Hayakawa E. M. Interendothelial junctional changes underlie the developmental 'tightening' of the blood-brain barrier. Brain Res. 1987 Apr;429(2):271–281. doi: 10.1016/0165-3806(87)90107-6. [DOI] [PubMed] [Google Scholar]
  27. Tauc M., Vignon X., Bouchaud C. Evidence for the effectiveness of the blood--CSF barrier in the fetal rat choroid plexus. A freeze-fracture and peroxidase diffusion study. Tissue Cell. 1984;16(1):65–74. doi: 10.1016/0040-8166(84)90019-3. [DOI] [PubMed] [Google Scholar]
  28. Wong R. P., Bradbury M. W. Permeability of the blood-brain barrier to calcium in adrenal insufficiency. Brain Res. 1975 Feb 7;84(2):361–364. doi: 10.1016/0006-8993(75)90995-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES