Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Dec;394:221–237. doi: 10.1113/jphysiol.1987.sp016867

Feeding- and chemical-related activity of ventromedial hypothalamic neurones in freely behaving rats.

T Ono 1, K Sasaki 1, R Shibata 1
PMCID: PMC1191958  PMID: 3443965

Abstract

1. The activity of seventy-eight single neurones in the ventromedial hypothalamus (v.m.h.) was recorded in sixty-three freely behaving rats, and the effects of feeding, intraventricular (I.C.V.) administrations of noradrenaline, glucose, NaCl and ambient temperature on neuronal activity were analysed. If I.C.V. NaCl had an effect, intraperitoneal (I.P.) NaCl, mannitol and polyethylene glycol were also tested. 2. Neurones in the v.m.h. were classified into three groups according to diurnal variations and their relations to electroencephalogram (e.e.g.) and responses to feeding: diurnal-e.e.g. related (57/78, 73.1%); diurnal-e.e.g. independent (17/78, 21.8%); non-diurnal-e.e.g. independent (4/78, 5.1%). Of fifty-seven e.e.g.-related neurones, twenty-six decreased activity during feeding episodes. Of seventeen e.e.g.-independent neurones, eight increased activity gradually during feeding and sustained the increase after the feeding episode. The response magnitude of two e.e.g.-independent neurones depended on the kind of food available. 3. Of twenty-five e.e.g.-related neurones tested, twelve responded to I.C.V. noradrenaline, but not to I.C.V. glucose or NaCl. Neurones independent of e.e.g. responded variously to I.C.V. noradrenaline, glucose and NaCl. When I.C.V. NaCl had an effect, I.P. NaCl, mannitol and polyethylene glycol had the same effect. The activity of three neurones was increased by I.C.V. glucose and decreased by I.C.V. noradrenaline, but was not changed by I.C.V. NaCl. The activity of three was increased by I.C.V. glucose and decreased by I.C.V. NaCl and by I.C.V. noradrenaline. The activity of five was increased, and that of three was decreased by I.C.V. glucose, NaCl and noradrenaline. Collectively, fourteen of twenty-four tested neurones responded to I.C.V. glucose, twenty-six of forty-one tested neurones responded to I.C.V. noradrenaline and eleven of twenty-six tested neurones responded to I.C.V. NaCl. 4. Increase of ambient temperature changed the activity of five e.e.g.-independent neurones. Directions of these activity changes were the same as directions of responses to NaCl; two up, three down. 5. The results suggest two main neuronal groups in the v.m.h.: the e.e.g.-related group is involved in the processing of information about sleep-arousal. The e.e.g.-independent group contributes to the long-term processing of information concerned with the regulation of the internal environment such as glucose level, osmotic pressure, NaCl level, the trigger mechanism for feeding, ambient temperature, food preference, etc.

Full text

PDF
221

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANAND B. K., CHHINA G. S., SHARMA K. N., DUA S., SINGH B. ACTIVITY OF SINGLE NEURONS IN THE HYPOTHALAMIC FEEDING CENTERS: EFFECT OF GLUCOSE. Am J Physiol. 1964 Nov;207:1146–1154. doi: 10.1152/ajplegacy.1964.207.5.1146. [DOI] [PubMed] [Google Scholar]
  2. Booth D. A. Feeding inhibition by glucose loads, compared between normal and diabetic rats. Physiol Behav. 1972 May;8(5):801–805. doi: 10.1016/0031-9384(72)90287-9. [DOI] [PubMed] [Google Scholar]
  3. Boulant J. A., Hardy J. D. The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J Physiol. 1974 Aug;240(3):639–660. doi: 10.1113/jphysiol.1974.sp010627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourque C. W., Renaud L. P. Activity patterns and osmosensitivity of rat supraoptic neurones in perfused hypothalamic explants. J Physiol. 1984 Apr;349:631–642. doi: 10.1113/jphysiol.1984.sp015178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campfield L. A., Brandon P., Smith F. J. On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: the role of glucose in meal initiation. Brain Res Bull. 1985 Jun;14(6):605–616. doi: 10.1016/0361-9230(85)90110-8. [DOI] [PubMed] [Google Scholar]
  6. Folkow B., Rubinstein E. H. Behavioural and autonomic patterns evoked by stimulation of the lateral hypothalamic area in the cat. Acta Physiol Scand. 1965 Dec;65(4):292–299. doi: 10.1111/j.1748-1716.1965.tb04276.x. [DOI] [PubMed] [Google Scholar]
  7. Fukuda M., Ono T., Nishino H., Sasaki K. Independent glucose effects on rat hypothalamic neurons: an in vitro study. J Auton Nerv Syst. 1984 May-Jun;10(3-4):373–381. doi: 10.1016/0165-1838(84)90034-1. [DOI] [PubMed] [Google Scholar]
  8. Grace J. E., Stevenson J. A. Thermogenic drinking in the rat. Am J Physiol. 1971 Apr;220(4):1009–1015. doi: 10.1152/ajplegacy.1971.220.4.1009. [DOI] [PubMed] [Google Scholar]
  9. HAMILTON C. L. Interactions of food intake and temperature regulation in the rat. J Comp Physiol Psychol. 1963 Jun;56:476–488. doi: 10.1037/h0046241. [DOI] [PubMed] [Google Scholar]
  10. Harris M. C., Sanghera M. Projection of medial basal hypothalamic neurones to the preoptic anterior hypothalamic areas and the paraventricular nucleus in the rat. Brain Res. 1974 Dec 13;81(3):401–411. doi: 10.1016/0006-8993(74)90839-7. [DOI] [PubMed] [Google Scholar]
  11. Hori T., Kiyohara T., Osaka T., Shibata M., Nakashima T. Responses of preoptic thermosensitive neurons to mediobasal hypothalamic stimulation. Brain Res Bull. 1982 Jun;8(6):677–683. doi: 10.1016/0361-9230(82)90095-8. [DOI] [PubMed] [Google Scholar]
  12. Ishibashi S., Oomura Y., Gueguen B., Nicolaidis S. Neuronal responses in subfornical organ and other regions to angiotensin II applied by various routes. Brain Res Bull. 1985 Apr;14(4):307–313. doi: 10.1016/0361-9230(85)90190-x. [DOI] [PubMed] [Google Scholar]
  13. Jeanningros R., Mei N. Vagal and splanchnic effects at the level of the ventromedian nucleus of the hypothalamus (VMH) in the cat. Brain Res. 1980 Mar 10;185(2):239–251. doi: 10.1016/0006-8993(80)91065-3. [DOI] [PubMed] [Google Scholar]
  14. Kita H., Oomura Y. An HRP study of the afferent connections to rat medial hypothalamic region. Brain Res Bull. 1982 Jan;8(1):53–62. doi: 10.1016/0361-9230(82)90027-2. [DOI] [PubMed] [Google Scholar]
  15. Kow L. M., Pfaff D. W. Actions of feeding-relevant agents on hypothalamic glucose-responsive neurons in vitro. Brain Res Bull. 1985 Nov;15(5):509–513. doi: 10.1016/0361-9230(85)90041-3. [DOI] [PubMed] [Google Scholar]
  16. Krieger M. S., Conrad L. C., Pfaff D. W. An autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus. J Comp Neurol. 1979 Feb 15;183(4):785–815. doi: 10.1002/cne.901830408. [DOI] [PubMed] [Google Scholar]
  17. Le Magnen J. Body energy balance and food intake: a neuroendocrine regulatory mechanism. Physiol Rev. 1983 Jan;63(1):314–386. doi: 10.1152/physrev.1983.63.1.314. [DOI] [PubMed] [Google Scholar]
  18. Le Magnen J. Metabolic and feeding patterns: role of sympathetic and parasympathetic efferent pathways. J Auton Nerv Syst. 1984 May-Jun;10(3-4):325–335. doi: 10.1016/0165-1838(84)90030-4. [DOI] [PubMed] [Google Scholar]
  19. Leibowitz S. F. Pattern of drinking and feeding produced by hypothalamic norepinephrine injection in the satiated rat. Physiol Behav. 1975 Jun;14(6):731–742. doi: 10.1016/0031-9384(75)90065-7. [DOI] [PubMed] [Google Scholar]
  20. Leng G., Mason W. T., Dyer R. G. The supraoptic nucleus as an osmoreceptor. Neuroendocrinology. 1982 Jan;34(1):75–82. doi: 10.1159/000123280. [DOI] [PubMed] [Google Scholar]
  21. Louis-Sylvestre J., Le Magnen J. Fall in blood glucose level precedes meal onset in free-feeding rats. Neurosci Biobehav Rev. 1980;4 (Suppl 1):13–15. doi: 10.1016/0149-7634(80)90041-x. [DOI] [PubMed] [Google Scholar]
  22. Martin J. B., Renaud L. P., Brazeau P., Jr Pulsatile growth hormone secretion: suppression by hypothalamic ventromedial lesions and by long-acting somatostatin. Science. 1974 Nov 8;186(4163):538–540. doi: 10.1126/science.186.4163.538. [DOI] [PubMed] [Google Scholar]
  23. Matsukawa K., Ninomiya I. Changes in renal sympathetic nerve activity, heart rate and arterial blood pressure associated with eating in cats. J Physiol. 1987 Sep;390:229–242. doi: 10.1113/jphysiol.1987.sp016696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Minami T., Oomura Y., Sugimori M. Electrophysiological properties and glucose responsiveness of guinea-pig ventromedial hypothalamic neurones in vitro. J Physiol. 1986 Nov;380:127–143. doi: 10.1113/jphysiol.1986.sp016276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miselis R. R. The efferent projections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance. Brain Res. 1981 Dec 28;230(1-2):1–23. doi: 10.1016/0006-8993(81)90388-7. [DOI] [PubMed] [Google Scholar]
  26. Nakayama T., Imai-Matsumura K. Response of glucose-responsive ventromedial hypothalamic neurons to scrotal and preoptic thermal stimulation in rats. Neurosci Lett. 1984 Mar 23;45(2):129–134. doi: 10.1016/0304-3940(84)90087-9. [DOI] [PubMed] [Google Scholar]
  27. Ono T., Nishino H., Fukuda M., Sasaki K., Muramoto K., Oomura Y. Glucoresponsive neurons in rat ventromedial hypothalamic tissue slices in vitro. Brain Res. 1982 Jan 28;232(2):494–499. doi: 10.1016/0006-8993(82)90295-5. [DOI] [PubMed] [Google Scholar]
  28. Ono T., Sasaki K., Nishino H., Fukuda M., Shibata R. Feeding and diurnal related activity of lateral hypothalamic neurons in freely behaving rats. Brain Res. 1986 May 14;373(1-2):92–102. doi: 10.1016/0006-8993(86)90319-7. [DOI] [PubMed] [Google Scholar]
  29. Oomura Y., Ono T., Ooyama H., Wayner M. J. Glucose and osmosensitive neurones of the rat hypothalamus. Nature. 1969 Apr 19;222(5190):282–284. doi: 10.1038/222282a0. [DOI] [PubMed] [Google Scholar]
  30. Oomura Y., Ooyama H., Naka F., Yamamoto T., Ono T., Kobayashi N. Some stochastical patterns of single unit discharges in the cat hypothalamus under chronic conditions. Ann N Y Acad Sci. 1969 May 15;157(2):666–689. doi: 10.1111/j.1749-6632.1969.tb12913.x. [DOI] [PubMed] [Google Scholar]
  31. Ritter R. C., Epstein A. N. Control of meal size by central noradrenergic action. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3740–3743. doi: 10.1073/pnas.72.9.3740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Saphier D., Feldman S. Electrophysiologic evidence for connections between the supraoptic and the arcuate/ventromedial hypothalamic nuclei in the rat. Exp Neurol. 1986 Jun;92(3):563–570. doi: 10.1016/0014-4886(86)90298-0. [DOI] [PubMed] [Google Scholar]
  33. Spector N. H., Brobeck J. R., Hamilton C. L. Feeding and core temperature in albino rats: changes induced by preoptic heating and cooling. Science. 1968 Jul 19;161(3838):286–288. doi: 10.1126/science.161.3838.286. [DOI] [PubMed] [Google Scholar]
  34. Steffens A. B., Damsma G., van der Gugten J., Luiten P. G. Circulating free fatty acids, insulin, and glucose during chemical stimulation of hypothalamus in rats. Am J Physiol. 1984 Dec;247(6 Pt 1):E765–E771. doi: 10.1152/ajpendo.1984.247.6.E765. [DOI] [PubMed] [Google Scholar]
  35. Steffens A. B. Influence of the oral cavity on insulin release in the rat. Am J Physiol. 1976 May;230(5):1411–1415. doi: 10.1152/ajplegacy.1976.230.5.1411. [DOI] [PubMed] [Google Scholar]
  36. Thrasher T. N., Jones R. G., Keil L. C., Brown C. J., Ramsay D. J. Drinking and vasopressin release during ventricular infusions of hypertonic solutions. Am J Physiol. 1980 May;238(5):R340–R345. doi: 10.1152/ajpregu.1980.238.5.R340. [DOI] [PubMed] [Google Scholar]
  37. Wit A., Wang S. C. Temperature-sensitive neurons in preoptic-anterior hypothalamic region: effects of increasing ambient temperature. Am J Physiol. 1968 Nov;215(5):1151–1159. doi: 10.1152/ajplegacy.1968.215.5.1151. [DOI] [PubMed] [Google Scholar]
  38. Yoshimatsu H., Niijima A., Oomura Y., Yamabe K., Katafuchi T. Effects of hypothalamic lesion on pancreatic autonomic nerve activity in the rat. Brain Res. 1984 Jun 11;303(1):147–152. doi: 10.1016/0006-8993(84)90222-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES