Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Jan;395:57–76. doi: 10.1113/jphysiol.1988.sp016908

Parameters for 3-O-methyl glucose transport in human erythrocytes and fit of asymmetric carrier kinetics.

G F Baker 1, W F Widdas 1
PMCID: PMC1191983  PMID: 3411487

Abstract

1. Equilibrium exchanges in the range of 2-40 mM-3-O-methyl glucose at 16 degrees C suggested that the half-saturation concentration for exchange was 22 mM and that the maximum velocity (Vmax) was ca. 149 mmol l-1 min-1. 2. Initial rates of exchange influx from 1, 2, 4 and 8 mM into 76 mM solution gave a half-saturation value of 3.6 mM and a Vmax of 122 mmol-1 min-1. 3. The non-transportable inhibitor 4,6-O-ethylidene-alpha-D-glucopyranose (ethylidene glucose) acting on the outside of the cells inhibited 3-O-methyl glucose exchanges at 16 degrees C with an inhibition constant (KI) of ca. 11 mM. 4. Sen-Widdas exit experiments gave the half-saturation for 3-O-methyl glucose at 16 degrees C as only ca. 2 mM and the KI for ethylidene glucose as ca. 4 mM. 5. Efflux inhibitions by ethylidene glucose are satisfactorily predicted by the asymmetric carrier kinetics of Regen & Tarpley (1974) when using the parameters derived from the exchange experiments but not with parameters from Sen-Widdas exits. 6. Uphill transfer by counterflow experiments and Sen-Widdas exits cannot be fitted by the Regen and Tarpley kinetics (using the same parameters) unless the kinetics are modified to provide for an extra exchange element which replaces some of the net exit component in the equations. 7. At present the modification to the kinetics is only possible in computer simulations and data handling, but with it the fit to experimental results is good. The nature of the modification is described and in the light of it a revised interpretation of the significance of the Km derived from Sen-Widdas exits is discussed.

Full text

PDF
57

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aubby D. S., Widdas W. F. Asymmetry of hexose transfer system in erythrocytes of fetal and new-born guinea-pigs. J Physiol. 1980 Dec;309:317–327. doi: 10.1113/jphysiol.1980.sp013510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker G. F., Basketter D. A., Widdas W. F. Asymmetry of the hexose transfer system in human erythrocytes. Experiments with non-transportable inhibitors. J Physiol. 1978 May;278:377–388. doi: 10.1113/jphysiol.1978.sp012310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker G. F., Naftalin R. J. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane. Biochim Biophys Acta. 1979 Feb 2;550(3):474–484. doi: 10.1016/0005-2736(79)90150-0. [DOI] [PubMed] [Google Scholar]
  4. Baker G. F., Widdas W. F. The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model. J Physiol. 1973 May;231(1):143–165. doi: 10.1113/jphysiol.1973.sp010225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Basketter D. A., Widdas W. F. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors. J Physiol. 1978 May;278:389–401. doi: 10.1113/jphysiol.1978.sp012311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geck P. Eigenschaften eines asymmetrischen Carrier-Modells für den Zuckertrnasport am menschlichen Erythrozyten. Biochim Biophys Acta. 1971 Aug 13;241(2):462–472. doi: 10.1016/0005-2736(71)90045-9. [DOI] [PubMed] [Google Scholar]
  7. Ginsburg H., Stein W. D. Zero-trans and infinite-cis uptake of galactose in human erythrocytes. Biochim Biophys Acta. 1975 Mar 25;382(3):353–368. doi: 10.1016/0005-2736(75)90277-1. [DOI] [PubMed] [Google Scholar]
  8. Hanes C. S. Studies on plant amylases: The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley. Biochem J. 1932;26(5):1406–1421. doi: 10.1042/bj0261406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hankin B. L., Lieb W. R., Stein W. D. Rejection criteria for the asymmetric carrier and their application to glucose transport in the human red blood cell. Biochim Biophys Acta. 1972 Oct 23;288(1):114–126. doi: 10.1016/0005-2736(72)90229-5. [DOI] [PubMed] [Google Scholar]
  10. Holman G. D. An allosteric pore model for sugar transport in human erythrocytes. Biochim Biophys Acta. 1980 Jun 20;599(1):202–213. doi: 10.1016/0005-2736(80)90068-1. [DOI] [PubMed] [Google Scholar]
  11. Naftalin R. J., Smith P. M., Roselaar S. E. Evidence for non-uniform distribution of D-glucose within human red cells during net exit and counterflow. Biochim Biophys Acta. 1985 Nov 7;820(2):235–249. doi: 10.1016/0005-2736(85)90117-8. [DOI] [PubMed] [Google Scholar]
  12. REGEN D. M., MORGAN H. E. STUDIES OF THE GLUCOSE-TRANSPORT SYSTEM IN THE RABBIT ERYTHROCYTE. Biochim Biophys Acta. 1964 Jan 27;79:151–166. doi: 10.1016/0926-6577(64)90048-8. [DOI] [PubMed] [Google Scholar]
  13. Regen D. M., Tarpley H. L. Anomalous transport kinetics and the glucose carrier hypothesis. Biochim Biophys Acta. 1974 Mar 15;339(2):218–233. doi: 10.1016/0005-2736(74)90320-4. [DOI] [PubMed] [Google Scholar]
  14. SEN A. K., WIDDAS W. F. Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit. J Physiol. 1962 Mar;160:392–403. doi: 10.1113/jphysiol.1962.sp006854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SEN A. K., WIDDAS W. F. Variations of the parameters of glucose transfer across the human erythrocyte membrane in the presence of inhibitors of transfer. J Physiol. 1962 Mar;160:404–416. doi: 10.1113/jphysiol.1962.sp006855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Speizer L., Haugland R., Kutchai H. Asymmetric transport of a fluorescent glucose analogue by human erythrocytes. Biochim Biophys Acta. 1985 Apr 26;815(1):75–84. doi: 10.1016/0005-2736(85)90476-6. [DOI] [PubMed] [Google Scholar]
  17. WIDDAS W. F. Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J Physiol. 1952 Sep;118(1):23–39. doi: 10.1113/jphysiol.1952.sp004770. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES