Abstract
1. Secretion of [3H]acetylcholine was studied in the guinea-pig ileum longitudinal muscle-myenteric plexus preparation. The transmitter stores of the cholinergic nerves were labelled by pre-incubation with [3H]choline. The preparation was mounted in an organ bath and superfused with Tyrode solution containing hemicholinium-3 and eserine. [3H]Acetylcholine secretion was evoked by electrical stimulation (0.5 Hz, 150 shocks). 2. 8-Bromo cyclic AMP, the adenylate cyclase activator forskolin, and the cyclic nucleotide phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine enhanced the [3H]acetylcholine secretion in a concentration-dependent manner. The values of 'maximal enhancement' calculated were similar, viz. 200-300% of control. 3. 8-Bromo cyclic GMP reduced the [3H]acetylcholine secretion. 4. The 'maximal enhancement' of 3-isobutyl-1-methylxanthine was not altered by the presence of forskolin (25 mumol/l) suggesting a common mechanism of action, i.e. elevation of endogenous cyclic AMP levels. 5. The muscarinic acetylcholine receptor antagonist atropine enhanced the [3H]acetylcholine secretion with a 'maximal enhancement' of 506% of control. Presence of neither forskolin (25 mumol/l) nor 3-isobutyl-1-methylxanthine (5 mmol/l) altered the 'maximal enhancement' for atropine. 6. In contrast, atropine (1 mumol/l) and 4-aminopyridine (0.5 mmol/l) additively enhanced the [3H]acetylcholine secretion. 7. The results suggest that neuronal cyclic AMP may be involved in muscarinic acetylcholine receptor-mediated control of [3H]acetylcholine secretion in guinea-pig ileum myenteric plexus.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts P., Bartfai T., Stjärne L. Site(s) and ionic basis of alpha-autoinhibition and facilitation of "3H'noradrenaline secretion in guinea-pig vas deferens. J Physiol. 1981 Mar;312:297–334. doi: 10.1113/jphysiol.1981.sp013630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alberts P., Bartfai T., Stjärne L. The effects of atropine on [3H]acetylcholine secretion from guinea-pig myenteric plexus evoked electrically or by high potassium. J Physiol. 1982 Aug;329:93–112. doi: 10.1113/jphysiol.1982.sp014292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alberts P. Mechanisms of facilitation and muscarinic or alpha-adrenergic inhibition of acetylcholine and noradrenaline secretion from peripheral nerves. Acta Physiol Scand Suppl. 1982;506:1–39. [PubMed] [Google Scholar]
- Alberts P., Ogren V. R. Sarin and soman depress [3H]acetylcholine secretion in guinea-pig ileum myenteric plexus. Acta Physiol Scand. 1985 Oct;125(2):347–348. doi: 10.1111/j.1748-1716.1985.tb07727.x. [DOI] [PubMed] [Google Scholar]
- Alberts P., Ogren V. R., Sellström A. I. Role of adenosine 3',5'-cyclic monophosphate in adrenoceptor-mediated control of 3H-noradrenaline secretion in guinea-pig ileum myenteric nerve terminals. Naunyn Schmiedebergs Arch Pharmacol. 1985 Aug;330(2):114–120. doi: 10.1007/BF00499903. [DOI] [PubMed] [Google Scholar]
- Alberts P., Ogren V., Sellström A. Cadmium inhibition of [3H]acetylcholine secretion in guinea-pig ileum myenteric plexus. Acta Physiol Scand. 1985 Jun;124(2):313–316. doi: 10.1111/j.1748-1716.1985.tb07666.x. [DOI] [PubMed] [Google Scholar]
- Alberts P., Stjärne L. Facilitation, and muscarinic and alpha-adrenergic inhibition of the secretion of 3H-acetylcholine and 3H-noradrenaline from guinea-pig ileum myenteric nerve terminals. Acta Physiol Scand. 1982 Sep;116(1):83–92. doi: 10.1111/j.1748-1716.1982.tb10602.x. [DOI] [PubMed] [Google Scholar]
- Alberts P., Stjärne L. Role of calcium in muscarinic autoinhibition of 3H-acetylcholine secretion in guinea-pig ileum myenteric plexus. Acta Physiol Scand. 1982 Aug;115(4):487–491. doi: 10.1111/j.1748-1716.1982.tb07108.x. [DOI] [PubMed] [Google Scholar]
- Alberts P., Stjärne L. Secretion of 3H-acetylcholine from guinea-pig ileum myenteric plexus is enhanced by 8-Br adenosine 3', 5'-cyclic monophosphate but not changed by 8-Br guanosine 3', 5'-cyclic monophosphate. Acta Physiol Scand. 1982 Jun;115(2):269–272. doi: 10.1111/j.1748-1716.1982.tb07075.x. [DOI] [PubMed] [Google Scholar]
- Bartfai T. Cyclic nucleotides in the central nervous system. Curr Top Cell Regul. 1980;16:225–269. doi: 10.1016/b978-0-12-152816-4.50011-x. [DOI] [PubMed] [Google Scholar]
- Cook M. A., Hamilton J. T., Okwuasaba F. K. Coenzyme A is a purine nucleotide modulator of acetylcholine output. Nature. 1978 Feb 23;271(5647):768–771. doi: 10.1038/271768a0. [DOI] [PubMed] [Google Scholar]
- Epstein P. M., Strada S. J., Sarada K., Thompson W. J. Catalytic and kinetic properties of purified high-affinity cyclic AMP phosphodiesterase from dog kidney. Arch Biochem Biophys. 1982 Oct 1;218(1):119–133. doi: 10.1016/0003-9861(82)90327-7. [DOI] [PubMed] [Google Scholar]
- Fonnum F., Aas P., Sterri S., Helle K. B. Modulation of the cholinergic activity of bronchial muscle during inhalation of soman. Fundam Appl Toxicol. 1984 Apr;4(2 Pt 2):S52–S57. doi: 10.1016/0272-0590(84)90137-4. [DOI] [PubMed] [Google Scholar]
- Fonnum F. Radiochemical micro assays for the determination of choline acetyltransferase and acetylcholinesterase activities. Biochem J. 1969 Nov;115(3):465–472. doi: 10.1042/bj1150465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greengard P. Intracellular signals in the brain. Harvey Lect. 1979 1980;75:277–331. [PubMed] [Google Scholar]
- Gustafsson L., Hedqvist P., Lundgren G. Pre- and postjunctional effects of prostaglandin E2, prostaglandin synthetase inhibitors and atropine on cholinergic neurotransmission in guinea pig ileum and bovine iris. Acta Physiol Scand. 1980 Dec;110(4):401–411. doi: 10.1111/j.1748-1716.1980.tb06687.x. [DOI] [PubMed] [Google Scholar]
- Hedlund B., Owen D. G., Barker J. L. Non-muscarinic effects of atropine on calcium conductances in cultured mouse spinal cord neurons. Neurosci Lett. 1985 Apr 19;55(3):355–359. doi: 10.1016/0304-3940(85)90461-6. [DOI] [PubMed] [Google Scholar]
- Häggblad J., Heilbronn E. Release of acetylcholine at the motor endplate of the rat - evidence against a muscarinic acetylcholine autoreceptor. Br J Pharmacol. 1983 Nov;80(3):471–476. doi: 10.1111/j.1476-5381.1983.tb10717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakobs K. H., Aktories K., Schultz G. Inhibition of adenylate cyclase by hormones and neurotransmitters. Adv Cyclic Nucleotide Res. 1981;14:173–187. [PubMed] [Google Scholar]
- Karras P. J., North R. A. Inhibition of neuronal firing by opiates: evidence against the involvement of cyclic nucleotides. Br J Pharmacol. 1979 Apr;65(4):647–652. doi: 10.1111/j.1476-5381.1979.tb07877.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilbinger H. Modulation by oxotremorine and atropine of acetylcholine release evoked by electrical stimulation of the myenteric plexus of the guinea-pig ileum. Naunyn Schmiedebergs Arch Pharmacol. 1977 Nov;300(2):145–151. doi: 10.1007/BF00505045. [DOI] [PubMed] [Google Scholar]
- Morita K., North R. A., Tokimasa T. Muscarinic agonists inactivate potassium conductance of guinea-pig myenteric neurones. J Physiol. 1982 Dec;333:125–139. doi: 10.1113/jphysiol.1982.sp014443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nemeth P. R., Palmer J. M., Wood J. D., Zafirov D. H. Effects of forskolin on electrical behaviour of myenteric neurones in guinea-pig small intestine. J Physiol. 1986 Jul;376:439–450. doi: 10.1113/jphysiol.1986.sp016162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nemeth P. R., Zafirov D., Wood J. D. Forskolin mimics slow synaptic excitation in myenteric neurons. Eur J Pharmacol. 1984 Jun 1;101(3-4):303–304. doi: 10.1016/0014-2999(84)90176-6. [DOI] [PubMed] [Google Scholar]
- Nordström O., Bartfai T. 8-Br-cyclic GMP mimics activation of muscarinic autoreceptor and inhibits acetylcholine release from rat hippocampal slices. Brain Res. 1981 Jun 1;213(2):467–471. doi: 10.1016/0006-8993(81)90255-9. [DOI] [PubMed] [Google Scholar]
- Palmer J. M., Wood J. D., Zafirov D. H. Elevation of adenosine 3',5'-phosphate mimics slow synaptic excitation in myenteric neurones of the guinea-pig. J Physiol. 1986 Jul;376:451–460. doi: 10.1113/jphysiol.1986.sp016163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paton W. D., Vizi E. S. The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guinea-pig ileum longitudinal muscle strip. Br J Pharmacol. 1969 Jan;35(1):10–28. doi: 10.1111/j.1476-5381.1969.tb07964.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabe C. S., Schneider J., McGee R., Jr Enhancement of depolarization-dependent neurosecretion from PC12 cells by forskolin-induced elevation of cyclic AMP. J Cyclic Nucleotide Res. 1982;8(6):371–384. [PubMed] [Google Scholar]
- Sawynok J., Jhamandas K. Interactions of methylxanthines, nonxanthine phosphodiesterase inhibitors, and calcium with morphine in the guinea pig myenteric plexus. Can J Physiol Pharmacol. 1979 Aug;57(8):853–859. doi: 10.1139/y79-130. [DOI] [PubMed] [Google Scholar]
- Sawynok J., Jhamandas K. Muscarinic feedback inhibition of acetylcholine release from the myenteric plexus in the quinea pig ileum and its status after chronic exposure to morphine. Can J Physiol Pharmacol. 1977 Aug;55(4):909–916. doi: 10.1139/y77-121. [DOI] [PubMed] [Google Scholar]
- Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
- Stjärne L., Bartfai T., Alberts P. The influence of 8-Br 3', 5'-cyclic nucleotide analogs and of inhibitors of 3', 5'-cyclic nucleotide phosphodiesterase, on noradrenaline secretion and neuromuscular transmission in guinea-pig vas deferens. Naunyn Schmiedebergs Arch Pharmacol. 1979 Aug;308(2):99–105. doi: 10.1007/BF00499050. [DOI] [PubMed] [Google Scholar]
- Szerb J. C. Effect of low calcium and of oxotremorine on the kinetics of the evoked release of [3H]acetylcholine from the guinea-pig myenteric plexus; comparison with morphine. Naunyn Schmiedebergs Arch Pharmacol. 1980 Mar;311(2):119–127. doi: 10.1007/BF00510250. [DOI] [PubMed] [Google Scholar]
- Tjörnhammar M. L., Bartfai T. Interaction of drugs with the cyclic nucleotide generating enzymes in the central nervous system. Med Res Rev. 1984 Oct-Dec;4(4):513–534. doi: 10.1002/med.2610040404. [DOI] [PubMed] [Google Scholar]
- Vizi E. S., Knoll J. The inhibitory effect of adenosine and related nucleotides on the release of acetylcholine. Neuroscience. 1976;1(5):391–398. doi: 10.1016/0306-4522(76)90132-9. [DOI] [PubMed] [Google Scholar]
- Vizi E. S. Presynaptic modulation of neurochemical transmission. Prog Neurobiol. 1979;12(3-4):181–290. doi: 10.1016/0301-0082(79)90011-x. [DOI] [PubMed] [Google Scholar]
- Vizi E. S., van Dijk J., Foldes F. F. The effect of 4-aminopyridine on acetylcholine release. J Neural Transm. 1977;41(4):265–274. doi: 10.1007/BF01252021. [DOI] [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zafirov D. H., Palmer J. M., Nemeth P. R., Wood J. D. Cyclic 3',5'-adenosine monophosphate mimics slow synaptic excitation in myenteric plexus neurons. Brain Res. 1985 Nov 18;347(2):368–371. doi: 10.1016/0006-8993(85)90201-x. [DOI] [PubMed] [Google Scholar]
