Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Jan;395:597–623. doi: 10.1113/jphysiol.1988.sp016937

A chloride conductance activated by adenosine 3',5'-cyclic monophosphate in the apical membrane of Necturus enterocytes.

F Giraldez 1, F V Sepúlveda 1, D N Sheppard 1
PMCID: PMC1192012  PMID: 2457684

Abstract

1. Intracellular potentials, Cl- activity and membrane resistances were measured in Necturus small intestinal epithelium during Cl- replacement experiments using conventional or Cl- -selective double-barrelled microelectrodes. A Cl- conductance, located in the apical membrane and activated by cyclic nucleotides is demonstrated by ion-substitution experiments. 2. The mean mucosal membrane potential (Em) was -35.5 mV. Removal of Cl- from the mucosal medium by replacement with gluconate, evoked a sudden depolarization of Em and an immediate increase in the fractional resistance of the mucosal membrane (f(Rm)). The size of the change in Em varied between 3 and 65 mV, corresponding to Cl- to K+ permeability ratios between 0.2 and 20. It was inversely related to the initial f(Rm), which ranged from 0.04 to 0.50. 3. Prolonged incubation in low-Cl- solutions led to a reversal of the initial depolarization and to a sustained hyperpolarization accompanied by a marked increase in f(Rm). The new value of Em was close to the K+ equilibrium potential, consistent with a depletion of cellular Cl- and the preponderance of a K+ membrane permeability in the absence of Cl-. This emphasizes the role of Cl- in establishing Em. 4. Removal of mucosal Cl- produced a fast decrease in intracellular Cl-, as measured with Cl- -selective microelectrodes. The efflux was consistent with electrodiffusion across the mucosal membrane. Changes in Em paralleled changes in intracellular Cl- activity, indicating the presence of a large Cl- conductance. 5. Dibutyryl cyclic AMP or forskolin produced a slow depolarization, a decrease in f(Rm) and an increased change in intracellular potential in low mucosal Cl- which on average corresponds to an approximately 15-fold increase in the relative Cl- permeability. These results are consistent with an activation of apical Cl- conductance. 6. The selectivity of Cl- channels of Necturus enterocytes to different anions was obtained from potential measurements. The sequence of permeabilities was SCN- greater than I- greater than or equal to Br- greater than NO3- greater than Cl- much greater than HCO3- greater than gluconate. This is consistent with a model involving a weak interaction of the anions with the selectivity filter. 7. The selectivity of the anion conductance was maintained after activation with cyclic nucleotides, suggesting a single channel for the permeation of the different anions tested, rather than parallel channels. 8. Derivatives of 9-anthracene which are potent inhibitors of Cl- channels in other systems failed to block the apical Cl- conductance of Necturus enterocytes. Chloride conductance was also insensitive to furosemide.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
597

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong W. M., Bixenman W. R., Frey K. F., Garcia-Diaz J. F., O'Regan M. G., Owens J. L. Energetics of coupled Na+ and Cl- entry into epithelial cells of bullfrog small intestine. Biochim Biophys Acta. 1979 Feb 20;551(1):207–219. doi: 10.1016/0005-2736(79)90366-3. [DOI] [PubMed] [Google Scholar]
  2. Baumgarten C. M. An improved liquid ion exchanger for chloride ion-selective microelectrodes. Am J Physiol. 1981 Nov;241(5):C258–C263. doi: 10.1152/ajpcell.1981.241.5.C258. [DOI] [PubMed] [Google Scholar]
  3. Beyenbach K. W., Frömter E. Electrophysiological evidence for Cl secretion in shark renal proximal tubules. Am J Physiol. 1985 Feb;248(2 Pt 2):F282–F295. doi: 10.1152/ajprenal.1985.248.2.F282. [DOI] [PubMed] [Google Scholar]
  4. Bolton J. E., Field M. Ca ionophore-stimulated ion secretion in rabbit ileal mucosa: relation to actions of cyclic 3',5'-AMP and carbamylcholine. J Membr Biol. 1977 Jun 30;35(2):159–173. doi: 10.1007/BF01869947. [DOI] [PubMed] [Google Scholar]
  5. Brown C. D., Rugg E. L., Simmons N. L. Loop-diuretic inhibition of adrenaline-stimulated Cl- secretion in a cultured epithelium of renal origin (MDCK). Q J Exp Physiol. 1986 Apr;71(2):183–193. doi: 10.1113/expphysiol.1986.sp002977. [DOI] [PubMed] [Google Scholar]
  6. Brown P. D., Burton K. A., Sepúlveda F. V. Transport of sugars or amino acids increases potassium efflux from isolated enterocytes. FEBS Lett. 1983 Nov 14;163(2):203–206. doi: 10.1016/0014-5793(83)80819-9. [DOI] [PubMed] [Google Scholar]
  7. Brown P. D., Sepúlveda F. V. Potassium movements associated with amino acid and sugar transport in enterocytes isolated from rabbit jejunum. J Physiol. 1985 Jun;363:271–285. doi: 10.1113/jphysiol.1985.sp015709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Jesus C. H., Ellory J. C., Smith M. W. Intracellular chloride activities in the mucosal epithelium of rabbit terminal ileum. J Physiol. 1975 Jan;244(1):31P–32P. [PubMed] [Google Scholar]
  9. Dharmsathaphorn K., Mandel K. G., Masui H., McRoberts J. A. Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl- cotransport system. J Clin Invest. 1985 Feb;75(2):462–471. doi: 10.1172/JCI111721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Di Stefano A., Wittner M., Schlatter E., Lang H. J., Englert H., Greger R. Diphenylamine-2-carboxylate, a blocker of the Cl(-)-conductive pathway in Cl(-)-transporting epithelia. Pflugers Arch. 1985;405 (Suppl 1):S95–100. doi: 10.1007/BF00581787. [DOI] [PubMed] [Google Scholar]
  11. Donowitz M., Welsh M. J. Ca2+ and cyclic AMP in regulation of intestinal Na, K, and Cl transport. Annu Rev Physiol. 1986;48:135–150. doi: 10.1146/annurev.ph.48.030186.001031. [DOI] [PubMed] [Google Scholar]
  12. Evans M. G., Marty A., Tan Y. P., Trautmann A. Blockage of Ca-activated Cl conductance by furosemide in rat lacrimal glands. Pflugers Arch. 1986 Jan;406(1):65–68. doi: 10.1007/BF00582955. [DOI] [PubMed] [Google Scholar]
  13. Frizzell R. A., Rechkemmer G., Shoemaker R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science. 1986 Aug 1;233(4763):558–560. doi: 10.1126/science.2425436. [DOI] [PubMed] [Google Scholar]
  14. Frömter E. The Feldberg Lecture 1976. Solute transport across epithelia: what can we learn from micropuncture studies in kidney tubules? J Physiol. 1979 Mar;288:1–31. [PMC free article] [PubMed] [Google Scholar]
  15. Geck P., Heinz E. The Na-K-2Cl cotransport system. J Membr Biol. 1986;91(2):97–105. doi: 10.1007/BF01925787. [DOI] [PubMed] [Google Scholar]
  16. Giraldez F. Active sodium transport and fluid secretion in the gall-bladder epithelium of Necturus. J Physiol. 1984 Mar;348:431–455. doi: 10.1113/jphysiol.1984.sp015118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Giráldez F., Sepúlveda F. V. Changes in the apparent chloride permeability of Necturus enterocytes during the sodium-coupled transport of alanine. Biochim Biophys Acta. 1987 Apr 9;898(2):248–252. doi: 10.1016/0005-2736(87)90044-7. [DOI] [PubMed] [Google Scholar]
  18. Grasset E., Gunter-Smith P., Schultz S. G. Effects of Na-coupled alanine transport on intracellular K activities and the K conductance of the basolateral membranes of Necturus small intestine. J Membr Biol. 1983;71(1-2):89–94. doi: 10.1007/BF01870677. [DOI] [PubMed] [Google Scholar]
  19. Greger R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol Rev. 1985 Jul;65(3):760–797. doi: 10.1152/physrev.1985.65.3.760. [DOI] [PubMed] [Google Scholar]
  20. Greger R., Oberleithner H., Schlatter E., Cassola A. C., Weidtke C. Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pflugers Arch. 1983 Sep;399(1):29–34. doi: 10.1007/BF00652518. [DOI] [PubMed] [Google Scholar]
  21. Greger R., Schlatter E., Gögelein H. Cl- -channels in the apical cell membrane of the rectal gland "induced" by cAMP. Pflugers Arch. 1985 Apr;403(4):446–448. doi: 10.1007/BF00589260. [DOI] [PubMed] [Google Scholar]
  22. Gunther R. D., Schell R. E., Wright E. M. Ion permeability of rabbit intestinal brush border membrane vesicles. J Membr Biol. 1984;78(2):119–127. doi: 10.1007/BF01869199. [DOI] [PubMed] [Google Scholar]
  23. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hoffmann E. K. Anion transport systems in the plasma membrane of vertebrate cells. Biochim Biophys Acta. 1986 Jun 12;864(1):1–31. doi: 10.1016/0304-4157(86)90014-6. [DOI] [PubMed] [Google Scholar]
  25. Katchman A. N., Zeimal E. V. Ionic mechanisms of the rapid (nicotinic) phase of acetylcholine response in identified Planobarius corneus neurones. Brain Res. 1982 Jun 3;241(1):95–103. doi: 10.1016/0006-8993(82)91232-x. [DOI] [PubMed] [Google Scholar]
  26. Kenyon J. L., Gibbons W. R. Effects of low-chloride solutions on action potentials of sheep cardiac Purkinje fibers. J Gen Physiol. 1977 Nov;70(5):635–660. doi: 10.1085/jgp.70.5.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lau K. R., Hudson R. L., Schultz S. G. Effect of hypertonicity on the increase in basolateral conductance of Necturus small intestine in response to Na+-sugar cotransport. Biochim Biophys Acta. 1986 Feb 13;855(1):193–196. doi: 10.1016/0005-2736(86)90205-1. [DOI] [PubMed] [Google Scholar]
  28. Lew V. L., Ferreira H. G., Moura T. The behaviour of transporting epithelial cells. I. Computer analysis of a basic model. Proc R Soc Lond B Biol Sci. 1979 Nov 30;206(1162):53–83. doi: 10.1098/rspb.1979.0091. [DOI] [PubMed] [Google Scholar]
  29. Liedtke C. M., Hopfer U. Mechanism of Cl- translocation across small intestinal brush-border membrane. II. Demonstration of Cl--OH- exchange and Cl- conductance. Am J Physiol. 1982 Mar;242(3):G272–G280. doi: 10.1152/ajpgi.1982.242.3.G272. [DOI] [PubMed] [Google Scholar]
  30. Nicoll R. A. The blockade of GABA mediated responses in the frog spinal cord by ammonium ions and furosemide. J Physiol. 1978 Oct;283:121–132. doi: 10.1113/jphysiol.1978.sp012491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Petersen K. U., Reuss L. Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J Gen Physiol. 1983 May;81(5):705–729. doi: 10.1085/jgp.81.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions. J Membr Biol. 1975 Dec 4;25(1-2):115–139. doi: 10.1007/BF01868571. [DOI] [PubMed] [Google Scholar]
  33. Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
  34. Sepúlveda F. V., Mason W. T. Single channel recordings obtained from basolateral membranes of isolated rabbit enterocytes. FEBS Lett. 1985 Oct 21;191(1):87–91. doi: 10.1016/0014-5793(85)80999-6. [DOI] [PubMed] [Google Scholar]
  35. Vaandrager A. B., Ploemacher M. C., de Jonge H. R. Modulation of salt permeabilities of intestinal brush-border membrane vesicles by micromolar levels of internal calcium. Biochim Biophys Acta. 1986 Apr 14;856(2):325–336. doi: 10.1016/0005-2736(86)90043-x. [DOI] [PubMed] [Google Scholar]
  36. Wangemann P., Wittner M., Di Stefano A., Englert H. C., Lang H. J., Schlatter E., Greger R. Cl(-)-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflugers Arch. 1986;407 (Suppl 2):S128–S141. doi: 10.1007/BF00584942. [DOI] [PubMed] [Google Scholar]
  37. Welsh M. J. An apical-membrane chloride channel in human tracheal epithelium. Science. 1986 Jun 27;232(4758):1648–1650. doi: 10.1126/science.2424085. [DOI] [PubMed] [Google Scholar]
  38. White J. F. Bicarbonate-dependent chloride absorption in small intestine: ion fluxes and intracellular chloride activities. J Membr Biol. 1980 Apr 15;53(2):95–107. doi: 10.1007/BF01870578. [DOI] [PubMed] [Google Scholar]
  39. White J. F. Modes of Cl- transport across the mucosal and serosal membranes of urodele intestinal cells. J Membr Biol. 1986;92(1):75–89. doi: 10.1007/BF01869017. [DOI] [PubMed] [Google Scholar]
  40. Wright E. M., Diamond J. M. Anion selectivity in biological systems. Physiol Rev. 1977 Jan;57(1):109–156. doi: 10.1152/physrev.1977.57.1.109. [DOI] [PubMed] [Google Scholar]
  41. Zeuthen T., Ramos M., Ellory J. C. Inhibition of active chloride transport by piretanide. Nature. 1978 Jun 22;273(5664):678–680. doi: 10.1038/273678a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES