Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Jan;395:661–678. doi: 10.1113/jphysiol.1988.sp016940

Spatial vision of the achromat: spatial frequency and orientation-specific adaptation.

M W Greenlee 1, S Magnussen 1, K Nordby 1
PMCID: PMC1192015  PMID: 3261791

Abstract

1. The psychophysical technique of selective adaptation to stationary sine-wave gratings of varying spatial frequency and orientation was used to investigate the central processing of spatial information in the visual system of the complete achromat. 2. For adapting spatial frequencies of 1 and 2 cycles/deg, the spatial frequency and orientation selectivity of contrast threshold elevation is similar for achromatic and trichromatic vision. 3. For adapting frequencies below 1 cycle/deg, the achromat shows threshold elevations of normal magnitude with symmetrical spatial frequency and orientation tuning for adapting frequencies as low as 0.09 cycles/deg with 'bandwidth' estimates similar to those found at high frequencies in the trichromat. Below 0.66 cycles/deg no after-effect could be obtained in the trichromat, and the frequency tuning at 0.66 cycles/deg was skewed towards higher frequencies. 4. The interocular transfer of low-frequency adaptation in the achromat was 50%, which is the same value obtained at higher frequencies. 5. The time course of the decay of low spatial frequency adaptation in the achromat was similar to that found at higher frequencies. 6. Control experiments show no low-frequency adaptation in peripheral vision or in central vision in the dark-adapted trichromat indicating that low spatial frequency adaptation cannot be elicited through the rod system of the trichromat. 7. It is proposed that the observed range shift of adaptable spatial frequency mechanisms in the achromat's visual cortex is the result of an arrest at an early stage of sensory development. The visual cortex of the achromat is comparable, with respect to spatial processing, to that of the young, visually normal human infant.

Full text

PDF
661

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALPERN M., FALLS H. F., LEE G. B. The enigma of typical total monochromacy. Am J Ophthalmol. 1960 Nov;50:996–1012. doi: 10.1016/0002-9394(60)90353-6. [DOI] [PubMed] [Google Scholar]
  2. Albrecht D. G., Farrar S. B., Hamilton D. B. Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. J Physiol. 1984 Feb;347:713–739. doi: 10.1113/jphysiol.1984.sp015092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkinson J. Human visual development over the first 6 months of life. A review and a hypothesis. Hum Neurobiol. 1984;3(2):61–74. [PubMed] [Google Scholar]
  4. Bisti S., Clement R., Maffei L., Mecacci L. Spatial frequency and orientation tuning curves of visual neurones in the cat: effects of mean luminance. Exp Brain Res. 1977 Mar 30;27(3-4):335–345. doi: 10.1007/BF00235508. [DOI] [PubMed] [Google Scholar]
  5. Bjørklund R. A., Magnussen S. A study of interocular transfer of spatial adaptation. Perception. 1981;10(5):511–518. doi: 10.1068/p100511. [DOI] [PubMed] [Google Scholar]
  6. Blakemore C., Campbell F. W. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol. 1969 Jul;203(1):237–260. doi: 10.1113/jphysiol.1969.sp008862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blakemore C., Nachmias J. The orientation specificity of two visual after-effects. J Physiol. 1971 Feb;213(1):157–174. doi: 10.1113/jphysiol.1971.sp009374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boothe R. G., Dobson V., Teller D. Y. Postnatal development of vision in human and nonhuman primates. Annu Rev Neurosci. 1985;8:495–545. doi: 10.1146/annurev.ne.08.030185.002431. [DOI] [PubMed] [Google Scholar]
  9. Braastad B. O., Heggelund P. Development of spatial receptive-field organization and orientation selectivity in kitten striate cortex. J Neurophysiol. 1985 May;53(5):1158–1178. doi: 10.1152/jn.1985.53.5.1158. [DOI] [PubMed] [Google Scholar]
  10. Daniels J. D., Norman J. L., Pettigrew J. D. Biases for oriented moving bars in lateral geniculate nucleus neurons of normal and stripe-reared cats. Exp Brain Res. 1977 Aug 31;29(2):155–172. doi: 10.1007/BF00237039. [DOI] [PubMed] [Google Scholar]
  11. Dean A. F. Adaptation-induced alteration of the relation between response amplitude and contrast in cat striate cortical neurones. Vision Res. 1983;23(3):249–256. doi: 10.1016/0042-6989(83)90113-x. [DOI] [PubMed] [Google Scholar]
  12. Derrington A. M., Fuchs A. F. The development of spatial-frequency selectivity in kitten striate cortex. J Physiol. 1981 Jul;316:1–10. doi: 10.1113/jphysiol.1981.sp013767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dickinson C. M., Abadi R. V. The influence of nystagmoid oscillation on contrast sensitivity in normal observers. Vision Res. 1985;25(8):1089–1096. doi: 10.1016/0042-6989(85)90097-5. [DOI] [PubMed] [Google Scholar]
  14. Frégnac Y., Imbert M. Development of neuronal selectivity in primary visual cortex of cat. Physiol Rev. 1984 Jan;64(1):325–434. doi: 10.1152/physrev.1984.64.1.325. [DOI] [PubMed] [Google Scholar]
  15. Garey L. J. Structural development of the visual system of man. Hum Neurobiol. 1984;3(2):75–80. [PubMed] [Google Scholar]
  16. Georgeson M. A., Harris M. G. Spatial selectivity of contrast adaptation: models and data. Vision Res. 1984;24(7):729–741. doi: 10.1016/0042-6989(84)90214-1. [DOI] [PubMed] [Google Scholar]
  17. Gilinsky A. S. Orientation-specific effects of patterns of adapting light on visual acuity. J Opt Soc Am. 1968 Jan;58(1):13–18. doi: 10.1364/josa.58.000013. [DOI] [PubMed] [Google Scholar]
  18. Glickstein M., Heath G. G. Receptors in the monochromat eye. Vision Res. 1975 Jun;15(6):633–636. doi: 10.1016/0042-6989(75)90276-x. [DOI] [PubMed] [Google Scholar]
  19. Graham N. Spatial frequency channels in the human visual system: effects of luminance and pattern drift rate. Vision Res. 1972 Jan;12(1):53–68. doi: 10.1016/0042-6989(72)90137-x. [DOI] [PubMed] [Google Scholar]
  20. HUBEL D. H., WIESEL T. N. Shape and arrangement of columns in cat's striate cortex. J Physiol. 1963 Mar;165:559–568. doi: 10.1113/jphysiol.1963.sp007079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hess R. F., Nordby K., Pointer J. S. Regional variation of contrast sensitivity across the retina of the achromat: sensitivity of human rod vision. J Physiol. 1987 Jul;388:101–119. doi: 10.1113/jphysiol.1987.sp016604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hess R. F., Nordby K. Spatial and temporal limits of vision in the achromat. J Physiol. 1986 Feb;371:365–385. doi: 10.1113/jphysiol.1986.sp015981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hess R. F., Nordby K. Spatial and temporal properties of human rod vision in the achromat. J Physiol. 1986 Feb;371:387–406. doi: 10.1113/jphysiol.1986.sp015982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kranda K., Kulikowski J. J. Proceedings: Adaptation to coarse gratings under scotopic and photopic conditions. J Physiol. 1976 May;257(1):35P–36P. [PubMed] [Google Scholar]
  25. Legge G. E. Sustained and transient mechanisms in human vision: temporal and spatial properties. Vision Res. 1978;18(1):69–81. doi: 10.1016/0042-6989(78)90079-2. [DOI] [PubMed] [Google Scholar]
  26. Levick W. R., Thibos L. N. Orientation bias of cat retinal ganglion cells. Nature. 1980 Jul 24;286(5771):389–390. doi: 10.1038/286389a0. [DOI] [PubMed] [Google Scholar]
  27. Maffei L., Fiorentini A., Bisti S. Neural correlate of perceptual adaptation to gratings. Science. 1973 Dec 7;182(4116):1036–1038. doi: 10.1126/science.182.4116.1036. [DOI] [PubMed] [Google Scholar]
  28. Magnussen S., Greenlee M. W. Marathon adaptation to spatial contrast: saturation in sight. Vision Res. 1985;25(10):1409–1411. doi: 10.1016/0042-6989(85)90218-4. [DOI] [PubMed] [Google Scholar]
  29. Movshon J. A., Blakemore C. Orientation specificity and spatial selectivity in human vision. Perception. 1973;2(1):53–60. doi: 10.1068/p020053. [DOI] [PubMed] [Google Scholar]
  30. Movshon J. A., Lennie P. Pattern-selective adaptation in visual cortical neurones. Nature. 1979 Apr 26;278(5707):850–852. doi: 10.1038/278850a0. [DOI] [PubMed] [Google Scholar]
  31. Movshon J. A., Van Sluyters R. C. Visual neural development. Annu Rev Psychol. 1981;32:477–522. doi: 10.1146/annurev.ps.32.020181.002401. [DOI] [PubMed] [Google Scholar]
  32. Nordby K., Stabell B., Stabell U. Dark-adaptation of the human rod system. Vision Res. 1984;24(8):841–849. doi: 10.1016/0042-6989(84)90156-1. [DOI] [PubMed] [Google Scholar]
  33. Ohzawa I., Sclar G., Freeman R. D. Contrast gain control in the cat's visual system. J Neurophysiol. 1985 Sep;54(3):651–667. doi: 10.1152/jn.1985.54.3.651. [DOI] [PubMed] [Google Scholar]
  34. Pantle A., Sekuler R. Size-detecting mechanisms in human vision. Science. 1968 Dec 6;162(3858):1146–1148. doi: 10.1126/science.162.3858.1146-a. [DOI] [PubMed] [Google Scholar]
  35. Rusoff A. C., Dubin M. W. Development of receptive-field properties of retinal ganglion cells in kittens. J Neurophysiol. 1977 Sep;40(5):1188–1198. doi: 10.1152/jn.1977.40.5.1188. [DOI] [PubMed] [Google Scholar]
  36. SLOAN L. L. Congenital achromatopsia; a report of 19 cases. J Opt Soc Am. 1954 Feb;44(2):117–128. doi: 10.1364/josa.44.000117. [DOI] [PubMed] [Google Scholar]
  37. Sakitt B. Psychophysical correlates of photoreceptor activity. Vision Res. 1976;16(2):129–140. doi: 10.1016/0042-6989(76)90089-4. [DOI] [PubMed] [Google Scholar]
  38. Sclar G., Ohzawa I., Freeman R. D. Contrast gain control in the kitten's visual system. J Neurophysiol. 1985 Sep;54(3):668–675. doi: 10.1152/jn.1985.54.3.668. [DOI] [PubMed] [Google Scholar]
  39. Shapley R., Lennie P. Spatial frequency analysis in the visual system. Annu Rev Neurosci. 1985;8:547–583. doi: 10.1146/annurev.ne.08.030185.002555. [DOI] [PubMed] [Google Scholar]
  40. Skottun B. C., Nordby K., Magnussen S. Rod monochromat sensitivity to sine wave flicker at luminances saturating the rods. Invest Ophthalmol Vis Sci. 1980 Jan;19(1):108–111. [PubMed] [Google Scholar]
  41. Stromeyer C. F., 3rd, Klein S., Dawson B. M., Spillmann L. Low spatial-frequency channels in human vision: adaptation and masking. Vision Res. 1982;22(2):225–233. doi: 10.1016/0042-6989(82)90122-5. [DOI] [PubMed] [Google Scholar]
  42. Swift D. J., Smith R. A. An action spectrum for spatial-frequency adaptation. Vision Res. 1982;22(2):235–246. doi: 10.1016/0042-6989(82)90123-7. [DOI] [PubMed] [Google Scholar]
  43. Tolhurst D. J. Separate channels for the analysis of the shape and the movement of moving visual stimulus. J Physiol. 1973 Jun;231(3):385–402. doi: 10.1113/jphysiol.1973.sp010239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. WALLS G. L., HEATH G. G. Typical total color blindness reinterpreted. Acta Ophthalmol (Copenh) 1954;32(3):253–contd. [PubMed] [Google Scholar]
  45. Yuodelis C., Hendrickson A. A qualitative and quantitative analysis of the human fovea during development. Vision Res. 1986;26(6):847–855. doi: 10.1016/0042-6989(86)90143-4. [DOI] [PubMed] [Google Scholar]
  46. Zwas F., Alpern M. The density of human rhodopsin in the rods. Vision Res. 1976;16(2):121–127. doi: 10.1016/0042-6989(76)90088-2. [DOI] [PubMed] [Google Scholar]
  47. van Hof-van Duin J., Mohn G. The development of visual acuity in normal fullterm and preterm infants. Vision Res. 1986;26(6):909–916. doi: 10.1016/0042-6989(86)90149-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES