Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Mar;397:209–222. doi: 10.1113/jphysiol.1988.sp016996

Acetylcholine release by bradykinin, inositol 1,4,5-trisphosphate and phorbol dibutyrate in rodent neuroblastoma cells.

H Higashida 1
PMCID: PMC1192120  PMID: 2842493

Abstract

1. The action of bradykinin (BK), inositol 1,4,5-trisphosphate (InsP3), and phorbol dibutyrate (PDBu) on the release of acetylcholine (ACh) was studied electrophysiologically on short-distance (less than 20 micron) synapses formed between cultured NG108-15 mouse neuroblastoma x rat glioma hybrid cells and rat muscle cells. Action potentials in NG108-15 cells did not usually evoke an excitatory junction potential (EJP) in the muscle cell in this system. 2. Ionophoretic application of BK onto the somatic surface of an NG108-15 cell produced an increase in frequency of miniature end-plate potentials (MEPPs) for 40-50s in the paired myotube. Some MEPPs were evoked during BK-induced hyperpolarization (10-20 s) of the hybrid cell soma. A few MEPPs were also elicited during BK-induced depolarization. 3. Ionophoretic injection of Ca2+ into an NG108-15 cell soma generated MEPPs for a very brief period (less than 3 s), coincident with somatic hyperpolarization. No increase was observed during a subsequent somatic depolarization induced by a larger current of Ca2+. 4. Ionophoretic injection of InsP3 into the cytoplasm of an NG108-15 cell soma transiently evoked MEPPs during the InsP3-induced hyperpolarizing phase. A large InsP3 injection caused sustained generation of MEPPs for 2-4 min, associated with InsP3-evoked depolarization. 5. Within 3-5 min after exposure of NG108-15-myotube pairs to 1 microM-PDBu, the MEPP frequency increased by 2-5 times and reached a plateau after 8 min. The increase continued after wash-out of the drug. The PDBu-induced increase of MEPPs was still observed when the membrane potential of the NG108-15 cell was clamped at -30 mV. 6. The data suggest that the BK-induced facilitation results from the action of two intracellular second messengers: an InsP3-dependent release of Ca2+ from the intracellular storage sites and protein phosphorylation by diacyclglycerol (DAG)-activated protein kinase C.

Full text

PDF
209

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D. A., Higashida H. Inositol 1,4,5-trisphosphate and diacylglycerol mimic bradykinin effects on mouse neuroblastoma x rat glioma hybrid cells. J Physiol. 1988 Mar;397:185–207. doi: 10.1113/jphysiol.1988.sp016995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown D. A., Higashida H. Membrane current responses of NG108-15 mouse neuroblastoma x rat glioma hybrid cells to bradykinin. J Physiol. 1988 Mar;397:167–184. doi: 10.1113/jphysiol.1988.sp016994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Busis N. A., Daniels M. P., Bauer H. C., Pudimat P. A., Sonderegger P., Schaffner A. E., Nirenberg M. Three cholinergic neuroblastoma hybrid cell lines that form few synapses on myotubes are deficient in acetylcholine receptor aggregation molecules and large dense core vesicles. Brain Res. 1984 Dec 24;324(2):201–210. doi: 10.1016/0006-8993(84)90030-1. [DOI] [PubMed] [Google Scholar]
  4. Caratsch C. G., Grassi F., Molinaro M., Eusebi F. Postsynaptic effects of the phorbol ester TPA on frog end-plates. Pflugers Arch. 1986 Oct;407(4):409–413. doi: 10.1007/BF00652626. [DOI] [PubMed] [Google Scholar]
  5. Christian C. N., Nelson P. G., Bullock P., Mullinax D., Nirenberg M. Pharmacologic responses of cells of a neuroblastoma X glioma hybrid clone and modulation of synapses between hybrid cells and mouse myotubes. Brain Res. 1978 May 26;147(2):261–276. doi: 10.1016/0006-8993(78)90839-9. [DOI] [PubMed] [Google Scholar]
  6. Daniels M. P., Hamprecht B. The ultrastructure of neuroblastoma glioma somatic cell hybrids. Expression of neuronal characteristics stimulated by dibutyryl adenosine 3',5' cyclic monophosphate. J Cell Biol. 1974 Nov;63(2 Pt 1):691–699. doi: 10.1083/jcb.63.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dennis M. J., Miledi R. Characteristics of transmitter release at regenerating frog neuromuscular junctions. J Physiol. 1974 Jun;239(3):571–594. doi: 10.1113/jphysiol.1974.sp010583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dennis M. J., Miledi R. Non-transmitting neuromuscular junctions during an early stage of end-plate reinnervation. J Physiol. 1974 Jun;239(3):553–570. doi: 10.1113/jphysiol.1974.sp010582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Di Virgilio F., Lew D. P., Pozzan T. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature. 1984 Aug 23;310(5979):691–693. doi: 10.1038/310691a0. [DOI] [PubMed] [Google Scholar]
  10. Eusebi F., Molinaro M., Caratsch C. G. Effects of phorbol ester on spontaneous transmitter release at frog neuromuscular junction. Pflugers Arch. 1986 Feb;406(2):181–183. doi: 10.1007/BF00586680. [DOI] [PubMed] [Google Scholar]
  11. Furuya S., Furuya K. Ultrastructural changes in differentiating neuroblastoma x glioma hybrid cells. Tissue Cell. 1983;15(6):903–919. doi: 10.1016/0040-8166(83)90057-5. [DOI] [PubMed] [Google Scholar]
  12. Furuya S., Sawada M., Nagatsu T., Suzuki O., Higashida H. Localization of [3H]serotonin in neuroblastoma x glioma hybrid cells. Brain Res. 1985 Dec 30;361(1-2):77–90. doi: 10.1016/0006-8993(85)91277-6. [DOI] [PubMed] [Google Scholar]
  13. Harris A. J., Miledi R. The effect of type D botulinum toxin on frog neuromuscular junctions. J Physiol. 1971 Sep;217(2):497–515. doi: 10.1113/jphysiol.1971.sp009582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Higashida H., Brown D. A. Two polyphosphatidylinositide metabolites control two K+ currents in a neuronal cell. 1986 Sep 25-Oct 1Nature. 323(6086):333–335. doi: 10.1038/323333a0. [DOI] [PubMed] [Google Scholar]
  15. Higashida H., Kato T., Kano-Tanaka K., Okuya M., Miyake A., Tanaka T. Proliferation and synapse formation of neuroblastoma glioma hybrid cells: effects of glia maturation factor. Brain Res. 1981 Jun 15;214(2):287–299. doi: 10.1016/0006-8993(81)91195-1. [DOI] [PubMed] [Google Scholar]
  16. Higashida H., Streaty R. A., Klee W., Nirenberg M. Bradykinin-activated transmembrane signals are coupled via No or Ni to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells. Proc Natl Acad Sci U S A. 1986 Feb;83(4):942–946. doi: 10.1073/pnas.83.4.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jackson T. R., Hallam T. J., Downes C. P., Hanley M. R. Receptor coupled events in bradykinin action: rapid production of inositol phosphates and regulation of cytosolic free Ca2+ in a neural cell line. EMBO J. 1987 Jan;6(1):49–54. doi: 10.1002/j.1460-2075.1987.tb04717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Katz B., Miledi R. The role of calcium in neuromuscular facilitation. J Physiol. 1968 Mar;195(2):481–492. doi: 10.1113/jphysiol.1968.sp008469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim Y. I., Lømo T., Lupa M. T., Thesleff S. Miniature end-plate potentials in rat skeletal muscle poisoned with botulinum toxin. J Physiol. 1984 Nov;356:587–599. doi: 10.1113/jphysiol.1984.sp015484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MacDermot J., Higashida H., Wilson S. P., Matsuzawa H., Minna J., Nirenberg M. Adenylate cyclase and acetylcholine release regulated by separate serotonin receptors of somatic cell hybrids. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1135–1139. doi: 10.1073/pnas.76.3.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Malenka R. C., Madison D. V., Nicoll R. A. Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature. 1986 May 8;321(6066):175–177. doi: 10.1038/321175a0. [DOI] [PubMed] [Google Scholar]
  22. McGee R., Simpson P., Christian C., Mata M., Nelson P., Nirenberg M. Regulation of acetylcholine release from neuroblastoma x glioma hybrid cells. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1314–1318. doi: 10.1073/pnas.75.3.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nakagawa Y., Higashida H., Miki N. A single class of neurotensin receptors with high affinity in neuroblastoma X glioma NG108-15 hybrid cells that mediate facilitation of synaptic transmission. J Neurosci. 1984 Jun;4(6):1653–1661. doi: 10.1523/JNEUROSCI.04-06-01653.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nelson P. G., Christian C. N., Daniels M. P., Henkart M., Bullock P., Mullinax D., Nirenberg M. Formation of synapses between cells of a neuroblastoma X glioma hybrid clone and mouse myotubes. Brain Res. 1978 May 26;147(2):245–259. doi: 10.1016/0006-8993(78)90838-7. [DOI] [PubMed] [Google Scholar]
  25. Nelson P., Christian C., Nirenberg M. Synapse formation between clonal neuroblastoma X glioma hybrid cells and striated muscle cells. Proc Natl Acad Sci U S A. 1976 Jan;73(1):123–127. doi: 10.1073/pnas.73.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nirenberg M., Wilson S. P., Higashida H., Rotter A., Kreuger K., Busis N., Ray R., Kenimer J., Adler M., Fukui H. Synapse formation by neuroblastoma hybrid cells. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):707–715. doi: 10.1101/sqb.1983.048.01.074. [DOI] [PubMed] [Google Scholar]
  27. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  28. Osugi T., Imaizumi T., Mizushima A., Uchida S., Yoshida H. 1-Oleoyl-2-acetyl-glycerol and phorbol diester stimulate Ca2+ influx through Ca2+ channels in neuroblastoma x glioma hybrid NG108-15 cells. Eur J Pharmacol. 1986 Jul 15;126(1-2):47–51. doi: 10.1016/0014-2999(86)90736-3. [DOI] [PubMed] [Google Scholar]
  29. Osugi T., Uchida S., Imaizumi T., Yoshida H. Bradykinin-induced intracellular Ca2+ elevation in neuroblastoma X glioma hybrid NG108-15 cells; relationship to the action of inositol phospholipids metabolites. Brain Res. 1986 Jul 30;379(1):84–89. doi: 10.1016/0006-8993(86)90258-1. [DOI] [PubMed] [Google Scholar]
  30. Publicover S. J. Stimulation of spontaneous transmitter release by the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C. Brain Res. 1985 Apr 29;333(1):185–187. doi: 10.1016/0006-8993(85)90144-1. [DOI] [PubMed] [Google Scholar]
  31. Puro D. G., Nirenberg M. On the specificity of synapse formation. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3544–3548. doi: 10.1073/pnas.73.10.3544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Putney J. W., Jr, McKinney J. S., Aub D. L., Leslie B. A. Phorbol ester-induced protein secretion in rat parotid gland. Relationship to the role of inositol lipid breakdown and protein kinase C activation in stimulus-secretion coupling. Mol Pharmacol. 1984 Sep;26(2):261–266. [PubMed] [Google Scholar]
  33. Reiser G., Hamprecht B. Bradykinin causes a transient rise of intracellular Ca2+-activity in cultured neural cells. Pflugers Arch. 1985 Oct;405(3):260–264. doi: 10.1007/BF00582570. [DOI] [PubMed] [Google Scholar]
  34. Reiser G., Hamprecht B. Bradykinin induces hyperpolarizations in rat glioma cells and in neuroblastoma X glioma hybrid cells. Brain Res. 1982 May 6;239(1):191–199. doi: 10.1016/0006-8993(82)90841-1. [DOI] [PubMed] [Google Scholar]
  35. Rink T. J., Sanchez A. Effects of prostaglandin I2 and forskolin on the secretion from platelets evoked at basal concentrations of cytoplasmic free calcium by thrombin, collagen, phorbol ester and exogenous diacylglycerol. Biochem J. 1984 Sep 15;222(3):833–836. doi: 10.1042/bj2220833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shapira R., Silberberg S. D., Ginsburg S., Rahamimoff R. Activation of protein kinase C augments evoked transmitter release. Nature. 1987 Jan 1;325(6099):58–60. doi: 10.1038/325058a0. [DOI] [PubMed] [Google Scholar]
  37. Yano K., Higashida H., Hattori H., Nozawa Y. Bradykinin-induced transient accumulation of inositol trisphosphate in neuron-like cell line NG108-15 cells. FEBS Lett. 1985 Feb 25;181(2):403–406. doi: 10.1016/0014-5793(85)80301-x. [DOI] [PubMed] [Google Scholar]
  38. Yano K., Higashida H., Inoue R., Nozawa Y. Bradykinin-induced rapid breakdown of phosphatidylinositol 4,5-bisphosphate in neuroblastoma X glioma hybrid NG108-15 cells. J Biol Chem. 1984 Aug 25;259(16):10201–10207. [PubMed] [Google Scholar]
  39. Yano K., Higashida H., Nozawa Y. Evidence for a Ca2+-independent hydrolysis of phosphatidylinositol 4,5-bisphosphate in neuron-like cell line NG108-15 cells. FEBS Lett. 1985 Apr 22;183(2):235–239. doi: 10.1016/0014-5793(85)80784-5. [DOI] [PubMed] [Google Scholar]
  40. de Blas A., Adler M., Shih M., Chiang P. K., Cantoni G. L., Nirenberg M. Inhibitors of CDP-choline synthesis, action potential calcium channels, and stimulus-secretion coupling. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4353–4357. doi: 10.1073/pnas.81.14.4353. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES