Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Mar;397:223–236. doi: 10.1113/jphysiol.1988.sp016997

Effect of theophylline on the apical sodium and chloride permeabilities of amphibian skin.

U Katz 1, W Van Driessche 1
PMCID: PMC1192121  PMID: 2457697

Abstract

1. The effects of theophylline (1 mmol/l) on the sodium transport (short-circuit current, Isc) and transepithelial conductance (Gtotal) through toad (Bufo viridis) and frog (Rana temporaria and Rana esculenta) skin were investigated. 2. In toad skin incubated with nitrate Ringer solution on the apical side, theophylline induced an increase in Isc similar to that in frog skin bathed with chloride Ringer solution. 3. The increase in Isc could be attributed to recruitment of sodium channels, without affecting the single-channel current. 4. Chloride-bathed toad skin responded to theophylline with a large increase in transepithelial conductance, in addition to the increased Isc. 5. Chloride replacement by nitrate eliminated the effect of theophylline on the conductance increase, but the Isc response was even larger. 6. The results are discussed in relation to the localization of the cellular chloride pathway to the mitochondria-rich cells.

Full text

PDF
223

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli T. E., Schafer J. A. Mass transport across cell membranes: the effects of antidiuretic hormone on water and solute flows in epithelia. Annu Rev Physiol. 1976;38:451–500. doi: 10.1146/annurev.ph.38.030176.002315. [DOI] [PubMed] [Google Scholar]
  2. Beauwens R., Beaujean V., Zizi M., Rentmeesters M., Crabbé J. Increased chloride permeability of amphibian epithelia treated with aldosterone. Pflugers Arch. 1986 Dec;407(6):620–624. doi: 10.1007/BF00582642. [DOI] [PubMed] [Google Scholar]
  3. Candia O. A. Reduction of chloride fluxes by amiloride across the short-circuited frog skin. Am J Physiol. 1978 May;234(5):F437–F445. doi: 10.1152/ajprenal.1978.234.5.F437. [DOI] [PubMed] [Google Scholar]
  4. Cuthbert A. W., Painter E. Independent action of antidiuretic hormone, theophylline and cyclic 3',5'-adenosine monophosphate on cell membrane permeability in frog skin. J Physiol. 1968 Dec;199(3):593–612. doi: 10.1113/jphysiol.1968.sp008670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Wolf I., Van Driessche W. Voltage-dependent Ba2+ block of K+ channels in apical membrane of frog skin. Am J Physiol. 1986 Nov;251(5 Pt 1):C696–C706. doi: 10.1152/ajpcell.1986.251.5.C696. [DOI] [PubMed] [Google Scholar]
  6. Donowitz M., Welsh M. J. Ca2+ and cyclic AMP in regulation of intestinal Na, K, and Cl transport. Annu Rev Physiol. 1986;48:135–150. doi: 10.1146/annurev.ph.48.030186.001031. [DOI] [PubMed] [Google Scholar]
  7. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Els W. J., Helman S. I. Vasopressin, theophylline, PGE2, and indomethacin on active Na transport in frog skin: studies with microelectrodes. Am J Physiol. 1981 Sep;241(3):F279–F288. doi: 10.1152/ajprenal.1981.241.3.F279. [DOI] [PubMed] [Google Scholar]
  9. Erlij D., Van Driessche W., De Wolf I. Oxytocin stimulates the apical K+ conductance in frog skin. Pflugers Arch. 1986 Dec;407(6):602–606. doi: 10.1007/BF00582638. [DOI] [PubMed] [Google Scholar]
  10. Foskett J. K., Ussing H. H. Localization of chloride conductance to mitochondria-rich cells in frog skin epithelium. J Membr Biol. 1986;91(3):251–258. doi: 10.1007/BF01868818. [DOI] [PubMed] [Google Scholar]
  11. Hall W. J., O'Donoghue J. P., O'Regan M. G., Penny W. J. Endogenous prostaglandins, adenosine 3':5'-monophosphate and sodium transport across isolated frog skin. J Physiol. 1976 Jul;258(3):731–753. doi: 10.1113/jphysiol.1976.sp011443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helman S. I., Cox T. C., Van Driessche W. Hormonal control of apical membrane Na transport in epithelia. Studies with fluctuation analysis. J Gen Physiol. 1983 Aug;82(2):201–220. doi: 10.1085/jgp.82.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katz U., Larsen E. H. Chloride transport in toad skin (Bufo viridis). The effect of salt adaptation. J Exp Biol. 1984 Mar;109:353–371. doi: 10.1242/jeb.109.1.353. [DOI] [PubMed] [Google Scholar]
  14. Katz U., Scheffey C. The voltage-dependent chloride current conductance of toad skin is localized to mitochondria-rich cells. Biochim Biophys Acta. 1986 Oct 23;861(3):480–482. doi: 10.1016/0005-2736(86)90457-8. [DOI] [PubMed] [Google Scholar]
  15. Katz U., van Driessche W., Scheffey C. The role of mitochondria-rich cells in the chloride current conductance across toad skin. Biol Cell. 1985;55(3):245–250. doi: 10.1111/j.1768-322x.1985.tb00433.x. [DOI] [PubMed] [Google Scholar]
  16. Kristensen P. Effect of amiloride on chloride transport across amphibian epithelia. J Membr Biol. 1978;40(Spec No):167–185. doi: 10.1007/BF02026004. [DOI] [PubMed] [Google Scholar]
  17. Larsen E. H., Rasmussen B. E. Chloride channels in toad skin. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):413–434. doi: 10.1098/rstb.1982.0141. [DOI] [PubMed] [Google Scholar]
  18. Nagel W., Garcia-Diaz J. F., Essig A. Contribution of junctional conductance to the cellular voltage-divider ratio in frog skins. Pflugers Arch. 1983 Dec;399(4):336–341. doi: 10.1007/BF00652761. [DOI] [PubMed] [Google Scholar]
  19. Tago K., Schuster V. L., Stokes J. B. Regulation of chloride self exchange by cAMP in cortical collecting tubule. Am J Physiol. 1986 Jul;251(1 Pt 2):F40–F48. doi: 10.1152/ajprenal.1986.251.1.F40. [DOI] [PubMed] [Google Scholar]
  20. Van Driessche W., Aelvoet I., Erlij D. Oxytocin and cAMP stimulate monovalent cation movements through a Ca2+-sensitive, amiloride-insensitive channel in the apical membrane of toad urinary bladder. Proc Natl Acad Sci U S A. 1987 Jan;84(1):313–317. doi: 10.1073/pnas.84.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Van Driessche W., Erlij D. Noise analysis of inward and outward Na+ currents across the apical border of ouabain-treated frog skin. Pflugers Arch. 1983 Aug;398(3):179–188. doi: 10.1007/BF00657149. [DOI] [PubMed] [Google Scholar]
  22. Voûte C. L., Meier W. The mitochondria-rich cell of frog skin as hormone-sensitive "shunt-path". J Membr Biol. 1978;40(Spec No):151–165. doi: 10.1007/BF02026003. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES