Abstract
1. The inferior olive was destroyed by the drug 3-acetylpyridine in brown rats. Spontaneous and optokinetic eye movements in response to constant-velocity rotation (5-80 deg/s) or sinusoidal oscillations (0.05 and 0.1 Hz with 15 deg/s peak velocity and 0.3, 0.5, 1.0 and 2 Hz with 5 deg/s peak velocity) of the visual surround were recorded 4-6 days, 40-50 days and 3-4 months after the lesion using the magnetic search coil technique. 2. Persistent oculomotor deficits were observed in rats with a lesion of more than 97% of inferior olive neurones. In cases with a less complete lesion, no or only transient deficits were observed. In these latter cases the bulk of surviving neurones was located in the caudal half of the inferior olive, which includes the dorsal cap of Kooy. 3. Eye position holding after saccadic gaze shifts in the light was strongly deficient, showing pronounced postsaccadic centripetal drift for several hundred milliseconds. Similar deficits were observed in slow-phase components following quick phases of optokinetic nystagmus. In the dark, eye position holding was also deficient. 4. Closed-loop gains of optokinetic step responses obtained from rats with inferior olive lesions could be as good as those obtained from control animals. There was, however, a trend towards smaller gain values over the range of stimulus velocities tested. The duration of optokinetic after-nystagmus was not changed. 5. The initial fast rise of slow-phase velocity of optokinetic step responses was reduced by about 30-50%, showing no recovery in the follow-up experiments up to 3-4 months after the lesion. 6. Optokinetic responses to sinusoidal oscillations of the visual surround exhibited an increasing drop in gain for frequencies between 0.1 to 0.5 Hz. In the range of 0.5-2.0 Hz gain was only about 0.2 compared to 0.7-0.8 in control animals. Phase lag of sinusoidal responses was shifted to larger values by about 25-35 deg for frequencies increasing from 0.1 to 0.5 Hz. At 1.0 Hz phase shift was reduced to about 15 deg and at 2.0 Hz no significant change in phase was observed. Both gain and phase of sinusoidal responses showed some recovery when tested 3-4 months after inferior olive lesion. 7. The results suggest that inferior olive lesions impair velocity-to-position integration, mainly as a consequence of the missing climbing fibre input to the cerebellar flocculi.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF





















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baarsma E. A., Collewijn H. Changes in compensatory eye movements after unilateral labyrinthectomy in the rabbit. Arch Otorhinolaryngol. 1975 Dec 30;211(4):219–230. doi: 10.1007/BF00456342. [DOI] [PubMed] [Google Scholar]
- Balaban C. D. Central neurotoxic effects of intraperitoneally administered 3-acetylpyridine, harmaline and niacinamide in Sprague-Dawley and Long-Evans rats: a critical review of central 3-acetylpyridine neurotoxicity. Brain Res. 1985 Apr;356(1):21–42. doi: 10.1016/0165-0173(85)90017-7. [DOI] [PubMed] [Google Scholar]
- Barmack N. H., Hess D. T. Eye movements evoked by microstimulation of dorsal cap of inferior olive in the rabbit. J Neurophysiol. 1980 Jan;43(1):165–181. doi: 10.1152/jn.1980.43.1.165. [DOI] [PubMed] [Google Scholar]
- Barmack N. H., Hess D. T. Multiple-unit activity evoked in dorsal cap of inferior olive of the rabbit by visual stimulation. J Neurophysiol. 1980 Jan;43(1):151–164. doi: 10.1152/jn.1980.43.1.151. [DOI] [PubMed] [Google Scholar]
- Barmack N. H., Pettorossi V. E. Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol. 1985 Feb;53(2):481–496. doi: 10.1152/jn.1985.53.2.481. [DOI] [PubMed] [Google Scholar]
- Barmack N. H., Simpson J. I. Effects of microlesions of dorsal cap of inferior olive of rabbits on optokinetic and vestibuloocular reflexes. J Neurophysiol. 1980 Jan;43(1):182–206. doi: 10.1152/jn.1980.43.1.182. [DOI] [PubMed] [Google Scholar]
- Benedetti F., Montarolo P. G., Rabacchi S. Inferior olive lesion induces long-lasting functional modification in the Purkinje cells. Exp Brain Res. 1984;55(2):368–371. doi: 10.1007/BF00237287. [DOI] [PubMed] [Google Scholar]
- Benedetti F., Montarolo P. G., Strata P., Tempia F. Inferior olive inactivation decreases the excitability of the intracerebellar and lateral vestibular nuclei in the rat. J Physiol. 1983 Jul;340:195–208. doi: 10.1113/jphysiol.1983.sp014758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell N. C., Armstrong D. M. Topographical localization in the olivocerebellar projection in the rat: an autoradiographic study. Brain Res. 1983 Sep 26;275(2):235–249. doi: 10.1016/0006-8993(83)90985-x. [DOI] [PubMed] [Google Scholar]
- Cazin L., Lannou J., Precht W. An electrophysiological study of pathways mediating optokinetic responses to the vestibular nucleus in the rat. Exp Brain Res. 1984;54(2):337–348. doi: 10.1007/BF00236235. [DOI] [PubMed] [Google Scholar]
- Cazin L., Precht W., Lannou J. Firing characteristics of neurons mediating optokinetic responses to rat's vestibular neurons. Pflugers Arch. 1980 Aug;386(3):221–230. doi: 10.1007/BF00587472. [DOI] [PubMed] [Google Scholar]
- Cazin L., Precht W., Lannou J. Pathways mediating optokinetic responses of vestibular nucleus neurons in the rat. Pflugers Arch. 1980 Mar;384(1):19–29. doi: 10.1007/BF00589510. [DOI] [PubMed] [Google Scholar]
- Cohen B., Uemura T., Takemori S. Effects of labyrinthectomy on optokinetic nystagmus (OKN) and optokinetic after-nystagmus (OKAN). Int J Equilib Res. 1973 Jun;3(1):88–93. [PubMed] [Google Scholar]
- Colin F., Manil J., Desclin J. C. The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers. Brain Res. 1980 Apr 7;187(1):3–27. doi: 10.1016/0006-8993(80)90491-6. [DOI] [PubMed] [Google Scholar]
- Collewijn H. Direction-selective units in the rabbit's nucleus of the optic tract. Brain Res. 1975 Dec 26;100(3):489–508. doi: 10.1016/0006-8993(75)90154-7. [DOI] [PubMed] [Google Scholar]
- Collewijn H. Dysmetria of fast phase of optokinetic nystagmus in cerebellectomized rabbits. Exp Neurol. 1970 Jul;28(1):144–154. doi: 10.1016/0014-4886(70)90169-x. [DOI] [PubMed] [Google Scholar]
- Collewijn H. Impairment of optokinetic (after-)nystagmus by labyrinthectomy in the rabbit. Exp Neurol. 1976 Jul;52(1):146–156. doi: 10.1016/0014-4886(76)90207-7. [DOI] [PubMed] [Google Scholar]
- Demer J. L., Robinson D. A. Effects of reversible lesions and stimulation of olivocerebellar system on vestibuloocular reflex plasticity. J Neurophysiol. 1982 Jun;47(6):1084–1107. doi: 10.1152/jn.1982.47.6.1084. [DOI] [PubMed] [Google Scholar]
- Desclin J. C., Escubi J. Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods. Brain Res. 1974 Sep 13;77(3):349–364. doi: 10.1016/0006-8993(74)90627-1. [DOI] [PubMed] [Google Scholar]
- Ebner T. J., Bloedel J. R. Correlation between activity of Purkinje cells and its modification by natural peripheral stimuli. J Neurophysiol. 1981 May;45(5):948–961. doi: 10.1152/jn.1981.45.5.948. [DOI] [PubMed] [Google Scholar]
- Ebner T. J., Bloedel J. R. Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. J Neurophysiol. 1981 May;45(5):962–971. doi: 10.1152/jn.1981.45.5.962. [DOI] [PubMed] [Google Scholar]
- Galiana H. L., Outerbridge J. S. A bilateral model for central neural pathways in vestibuloocular reflex. J Neurophysiol. 1984 Feb;51(2):210–241. doi: 10.1152/jn.1984.51.2.210. [DOI] [PubMed] [Google Scholar]
- Godaux E., Vanderkelen B. Vestibulo-ocular reflex, optokinetic response and their interactions in the cerebellectomized cat. J Physiol. 1984 Jan;346:155–170. doi: 10.1113/jphysiol.1984.sp015013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gwyn D. G., Nicholson G. P., Flumerfelt B. A. The inferior olivary nucleus of the rat: a light and electron microscopic study. J Comp Neurol. 1977 Aug 1;174(3):489–520. doi: 10.1002/cne.901740305. [DOI] [PubMed] [Google Scholar]
- Haddad G. M., Demer J. L., Robinson D. A. The effect of lesions of the dorsal cap of the inferior olive on the vestibulo-ocular and optokinetic systems of the cat. Brain Res. 1980 Mar 10;185(2):265–275. doi: 10.1016/0006-8993(80)91067-7. [DOI] [PubMed] [Google Scholar]
- Hess B. J., Precht W., Reber A., Cazin L. Horizontal optokinetic ocular nystagmus in the pigmented rat. Neuroscience. 1985 May;15(1):97–107. doi: 10.1016/0306-4522(85)90126-5. [DOI] [PubMed] [Google Scholar]
- Ito M., Jastreboff P. J., Miyashita Y. Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Exp Brain Res. 1982;45(1-2):233–242. doi: 10.1007/BF00235783. [DOI] [PubMed] [Google Scholar]
- Ito M., Orlov I., Shimoyama I. Reduction of the cerebellar stimulus effect on rat Deiters neurons after chemical destruction of the inferior olive. Exp Brain Res. 1978 Sep 15;33(1):143–145. doi: 10.1007/BF00238802. [DOI] [PubMed] [Google Scholar]
- Karachot L., Ito M., Kanai Y. Long-term effects of 3-acetylpyridine-induced destruction of cerebellar climbing fibers on Purkinje cell inhibition of vestibulospinal tract cells of the rat. Exp Brain Res. 1987;66(2):229–246. doi: 10.1007/BF00243301. [DOI] [PubMed] [Google Scholar]
- Keller E. L., Precht W. Visual-vestibular responses in vestibular nuclear neurons in the intact and cerebellectomized, alert cat. Neuroscience. 1979;4(11):1599–1613. doi: 10.1016/0306-4522(79)90023-x. [DOI] [PubMed] [Google Scholar]
- Kennedy P. R., Ross H. G., Brooks V. B. Participation of the principal olivary nucleus in neocerebellar motor control. Exp Brain Res. 1982;47(1):95–104. doi: 10.1007/BF00235890. [DOI] [PubMed] [Google Scholar]
- Kommerell G., Olivier D., Theopold H. Adaptive programming of phasic and tonic components in saccadic eye movements. Investigations of patients with abducens palsy. Invest Ophthalmol. 1976 Aug;15(8):657–660. [PubMed] [Google Scholar]
- Llinás R., Volkind R. A. The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res. 1973 Aug 31;18(1):69–87. doi: 10.1007/BF00236557. [DOI] [PubMed] [Google Scholar]
- Llinás R., Walton K., Hillman D. E., Sotelo C. Inferior olive: its role in motor learing. Science. 1975 Dec 19;190(4220):1230–1231. doi: 10.1126/science.128123. [DOI] [PubMed] [Google Scholar]
- Lopiano L., Savio T. Inferior olive lesion induces long-term modifications of cerebellar inhibition on Deiters nuclei. Neurosci Res. 1986 Nov;4(1):51–61. doi: 10.1016/0168-0102(86)90016-7. [DOI] [PubMed] [Google Scholar]
- Maioli C., Precht W., Ried S. Short- and long-term modifications of vestibulo-ocular response dynamics following unilateral vestibular nerve lesions in the cat. Exp Brain Res. 1983;50(2-3):259–274. doi: 10.1007/BF00239190. [DOI] [PubMed] [Google Scholar]
- McDevitt C. J., Ebner T. J., Bloedel J. R. The changes in Purkinje cell simple spike activity following spontaneous climbing fiber inputs. Brain Res. 1982 Apr 15;237(2):484–491. doi: 10.1016/0006-8993(82)90460-7. [DOI] [PubMed] [Google Scholar]
- Miyashita Y., Nagao S. Analysis of signal content of Purkinje cell responses to optokinetic stimuli in the rabbit cerebellar flocculus by selective lesions of brainstem pathways. Neurosci Res. 1984 Aug;1(4):223–241. doi: 10.1016/s0168-0102(84)80002-4. [DOI] [PubMed] [Google Scholar]
- Montarolo P. G., Palestini M., Strata P. The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. J Physiol. 1982 Nov;332:187–202. doi: 10.1113/jphysiol.1982.sp014409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Optican L. M., Robinson D. A. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol. 1980 Dec;44(6):1058–1076. doi: 10.1152/jn.1980.44.6.1058. [DOI] [PubMed] [Google Scholar]
- Optican L. M., Zee D. S., Miles F. A. Floccular lesions abolish adaptive control of post-saccadic ocular drift in primates. Exp Brain Res. 1986;64(3):596–598. doi: 10.1007/BF00340497. [DOI] [PubMed] [Google Scholar]
- Pompeiano O., Santarcangelo E., Stampacchia G., Srivastava U. C. Changes in posture and reflex movements due to kainic acid lesions of the inferior olive. Arch Ital Biol. 1981 Dec;119(4):279–313. [PubMed] [Google Scholar]
- ROBINSON D. A. THE MECHANICS OF HUMAN SACCADIC EYE MOVEMENT. J Physiol. 1964 Nov;174:245–264. doi: 10.1113/jphysiol.1964.sp007485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabacchi S., Rocca P., Strata P. Influence of inferior olive on flexor reflex activity. Exp Brain Res. 1986;63(1):191–196. doi: 10.1007/BF00235663. [DOI] [PubMed] [Google Scholar]
- Ritchie L. Effects of cerebellar lesions on saccadic eye movements. J Neurophysiol. 1976 Nov;39(6):1246–1256. doi: 10.1152/jn.1976.39.6.1246. [DOI] [PubMed] [Google Scholar]
- Robinson D. A. The effect of cerebellectomy on the cat's bestibulo-ocular integrator. Brain Res. 1974 May 17;71(2-3):195–207. doi: 10.1016/0006-8993(74)90961-5. [DOI] [PubMed] [Google Scholar]
- Schild R. F. On the inferior olive of the albino rat. J Comp Neurol. 1970 Nov;140(3):255–260. doi: 10.1002/cne.901400302. [DOI] [PubMed] [Google Scholar]
- Shimazu H., Precht W. Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol. 1966 May;29(3):467–492. doi: 10.1152/jn.1966.29.3.467. [DOI] [PubMed] [Google Scholar]
- Simpson J. I., Alley K. E. Visual climbing fiber input to rabbit vestibulo-cerebellum: a source of direction-specific information. Brain Res. 1974 Dec 27;82(2):302–308. doi: 10.1016/0006-8993(74)90610-6. [DOI] [PubMed] [Google Scholar]
- Soechting J. F., Ranish N. A., Palminteri R., Terzuolo C. A. Changes in a motor pattern following cerebellar and olivary lesions in the squirrel monkey. Brain Res. 1976 Mar 19;105(1):21–44. doi: 10.1016/0006-8993(76)90920-3. [DOI] [PubMed] [Google Scholar]
- Takeda T., Maekawa K. The origin of the pretecto-olivary tract. A study using the horseradish peroxidase method. Brain Res. 1976 Nov 26;117(2):319–325. doi: 10.1016/0006-8993(76)90740-x. [DOI] [PubMed] [Google Scholar]
- Terasawa K., Otani K., Yamada J. Descending pathways of the nucleus of the optic tract in the rat. Brain Res. 1979 Sep 21;173(3):405–417. doi: 10.1016/0006-8993(79)90238-5. [DOI] [PubMed] [Google Scholar]
- Waespe W., Cohen B., Raphan T. Role of the flocculus and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res. 1983;50(1):9–33. doi: 10.1007/BF00238229. [DOI] [PubMed] [Google Scholar]
- Waespe W., Wolfensberger M. Optokinetic nystagmus (OKN) and optokinetic after-responses after bilateral vestibular neurectomy in the monkey. Exp Brain Res. 1985;60(2):263–269. doi: 10.1007/BF00235920. [DOI] [PubMed] [Google Scholar]
- Zee D. S., Yamazaki A., Butler P. H., Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981 Oct;46(4):878–899. doi: 10.1152/jn.1981.46.4.878. [DOI] [PubMed] [Google Scholar]
