Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Mar;397:489–501. doi: 10.1113/jphysiol.1988.sp017014

Relaxation and hyperpolarization of the smooth muscle of the rat tail artery following electrical stimulation.

N Kotecha 1, T O Neild 1
PMCID: PMC1192138  PMID: 3411515

Abstract

1. The smooth muscle of the rat tail artery was made to constrict with noradrenaline or 5-hydroxytryptamine. Electrical stimulation of the contracted artery caused a transient hyperpolarization and relaxation. 2. The hyperpolarization and relaxation could be recorded from denervated arteries, showing that these responses were independent of the perivascular nerves. 3. Removal of the vascular endothelium caused only a small reduction in the relaxation. 4. Raising the external K+ concentration to 20 mM abolished or greatly reduced the relaxation, and caused some reduction of the hyperpolarization. 5. 1 mM-tetraethylammonium chloride abolished both the hyperpolarization and the relaxation. 6. From the membrane potential-contraction relationship for this artery it appeared that the hyperpolarization could account for some but not all of the relaxation.

Full text

PDF
489

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R., Constanti A., Brown D. A., Clark R. B. Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature. 1982 Apr 22;296(5859):746–749. doi: 10.1038/296746a0. [DOI] [PubMed] [Google Scholar]
  2. Bowman A., Gillespie J. S., Pollock D. Oxyhaemoglobin blocks non-adrenergic non-cholinergic inhibition in the bovine retractor penis muscle. Eur J Pharmacol. 1982 Nov 19;85(2):221–224. doi: 10.1016/0014-2999(82)90470-8. [DOI] [PubMed] [Google Scholar]
  3. Cheung D. W. Two components in the cellular response of rat tail arteries to nerve stimulation. J Physiol. 1982 Jul;328:461–468. doi: 10.1113/jphysiol.1982.sp014277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen R. A., Shepherd J. T., Vanhoutte P. M. Prejunctional and postjunctional actions of endogenous norepinephrine at the sympathetic neuroeffector junction in canine coronary arteries. Circ Res. 1983 Jan;52(1):16–25. doi: 10.1161/01.res.52.1.16. [DOI] [PubMed] [Google Scholar]
  5. De Mey J. G., Vanhoutte P. M. Interaction between Na+,K+ exchanges and the direct inhibitory effect of acetylcholine on canine femoral arteries. Circ Res. 1980 Jun;46(6):826–836. doi: 10.1161/01.res.46.6.826. [DOI] [PubMed] [Google Scholar]
  6. Ebeigbe A. B., Gantzos R. D., Webb R. C. Relaxation of rat tail artery to electrical stimulation. Life Sci. 1983 Jul 25;33(4):303–309. doi: 10.1016/s0024-3205(83)80001-0. [DOI] [PubMed] [Google Scholar]
  7. Frank G. W., Bevan J. A. Electrical stimulation causes endothelium-dependent relaxation in lung vessels. Am J Physiol. 1983 Jun;244(6):H793–H798. doi: 10.1152/ajpheart.1983.244.6.H793. [DOI] [PubMed] [Google Scholar]
  8. Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
  9. Gantzos R. D., Ebeigbe A. B., Webb R. C. Ca2+, histamine antagonists and relaxation to electrical impulses in dog coronary artery. Eur J Pharmacol. 1983 May 6;89(3-4):287–291. doi: 10.1016/0014-2999(83)90508-3. [DOI] [PubMed] [Google Scholar]
  10. Holman M. E., Surprenant A. Effects of tetraethylammonium chloride on sympathetic neuromuscular transmission in saphenous artery of young rabbits. J Physiol. 1980 Aug;305:451–465. doi: 10.1113/jphysiol.1980.sp013375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keef K., Neild T. O. Modification of the response to nerve stimulation in small arteries of guinea-pig caused by distension of the artery. J Physiol. 1982 Oct;331:355–365. doi: 10.1113/jphysiol.1982.sp014376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kinosita K., Jr, Tsong T. Y. Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature. 1977 Aug 4;268(5619):438–441. doi: 10.1038/268438a0. [DOI] [PubMed] [Google Scholar]
  13. Kotecha N., Neild T. O. Effects of endothelium-derived relaxing factor on the smooth muscle of the rat tail artery. Clin Exp Pharmacol Physiol. 1986 Mar;13(3):249–257. doi: 10.1111/j.1440-1681.1986.tb00343.x. [DOI] [PubMed] [Google Scholar]
  14. Lamb F. S., Webb R. C. Vascular effects of free radicals generated by electrical stimulation. Am J Physiol. 1984 Nov;247(5 Pt 2):H709–H714. doi: 10.1152/ajpheart.1984.247.5.H709. [DOI] [PubMed] [Google Scholar]
  15. Lee T. J., Su C., Bevan J. A. Nonsympathetic dilator innervation of cat cerebral arteries. Experientia. 1975 Dec 15;31(12):1424–1426. doi: 10.1007/BF01923224. [DOI] [PubMed] [Google Scholar]
  16. Mekata F. The role of hyperpolarization in the relaxation of smooth muscle of monkey coronary artery. J Physiol. 1986 Feb;371:257–265. doi: 10.1113/jphysiol.1986.sp015972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
  18. Neild T. O., Kotecha N. Relation between membrane potential and contractile force in smooth muscle of the rat tail artery during stimulation by norepinephrine, 5-hydroxytryptamine, and potassium. Circ Res. 1987 May;60(5):791–795. doi: 10.1161/01.res.60.5.791. [DOI] [PubMed] [Google Scholar]
  19. Neild T., Kotecha N. Two-component responses to sympathetic nerve stimulation in the rat tail artery. Comp Biochem Physiol C. 1985;81(2):311–317. doi: 10.1016/0742-8413(85)90012-x. [DOI] [PubMed] [Google Scholar]
  20. Rapoport R. M., Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983 Mar;52(3):352–357. doi: 10.1161/01.res.52.3.352. [DOI] [PubMed] [Google Scholar]
  21. Rooke T., Cohen R. A., Verbeuren T. J., Vanhoutte P. M. Non-neurogenic inhibitory effect of electrical impulses in isolated canine coronary arteries. Eur J Pharmacol. 1982 May 21;80(2-3):251–254. doi: 10.1016/0014-2999(82)90063-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES