Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Mar;397:503–512. doi: 10.1113/jphysiol.1988.sp017015

Nutrient uptake by rat enterocytes during diabetes mellitus; evidence for an increased sodium electrochemical gradient.

E S Debnam 1, W H Karasov 1, C S Thompson 1
PMCID: PMC1192139  PMID: 3411516

Abstract

1. The effect of streptozotocin-induced diabetes (7 day duration) in rats on D-glucose uptake in vivo, the unidirectional uptake of D-glucose and L-proline in vitro, the passive uptake of L-glucose in vitro and the potential difference across the brush-border membrane has been studied. 2. Diabetes resulted in an increased carrier-mediated glucose uptake both in vivo and in vitro and a stimulation of L-proline uptake at a concentration of the amino acid (0.025 mM) at which uptake was largely Na+ dependent. Diabetes was without effect on uptake using a proline concentration of 50 mM at which transport was predominantly Na+ independent. 3. A marked hyperpolarization of the brush-border membrane and an enhanced passive glucose uptake were also evident during diabetes. 4. We conclude that the stimulation of glucose uptake in vivo in diabetic intestine involves events at the brush-border membrane. The mechanisms include an increased surface area for uptake and an enhanced transmembrane electrical gradient. The latter will have a major effect on the transport of other substrates when the uptake pathway is primarily Na+ dependent.

Full text

PDF
503

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrad A. D., Lawrence A. L., Hazelwood R. L. Fasting and alloxan diabetes effects of intestinal transport of monosaccharides. Am J Physiol. 1970 Oct;219(4):860–864. doi: 10.1152/ajplegacy.1970.219.4.860. [DOI] [PubMed] [Google Scholar]
  2. Costrini N. V., Ganeshappa K. P., Wu W., Whalen G. E., Soergel K. H. Effect of insulin, glucose, and controlled diabetes mellitus on human jejunal function. Am J Physiol. 1977 Sep;233(3):E181–E187. doi: 10.1152/ajpendo.1977.233.3.E181. [DOI] [PubMed] [Google Scholar]
  3. Csáky T. Z., Fischer E. Intestinal sugar transport in experimental diabetes. Diabetes. 1981 Jul;30(7):568–574. doi: 10.2337/diab.30.7.568. [DOI] [PubMed] [Google Scholar]
  4. Debnam E. S., Levin R. J. An experimental method of identifying and quantifying the active transfer electrogenic component from the diffusive component during sugar absorption measured in vivo. J Physiol. 1975 Mar;246(1):181–196. doi: 10.1113/jphysiol.1975.sp010885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Debnam E. S., Thompson C. S. The effect of fasting on the potential difference across the brush-border membrane of enterocytes in rat small intestine. J Physiol. 1984 Oct;355:449–456. doi: 10.1113/jphysiol.1984.sp015430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fischer E., Lauterbach F. Effect of hyperglycaemia on sugar transport in the isolated mucosa of guinea-pig small intestine. J Physiol. 1984 Oct;355:567–586. doi: 10.1113/jphysiol.1984.sp015439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hopfer U. Diabetes mellitus: changes in the transport properties of isolated intestinal microvillous membranes. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2027–2031. doi: 10.1073/pnas.72.6.2027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karasov W. H., Diamond J. M. Adaptive regulation of sugar and amino acid transport by vertebrate intestine. Am J Physiol. 1983 Oct;245(4):G443–G462. doi: 10.1152/ajpgi.1983.245.4.G443. [DOI] [PubMed] [Google Scholar]
  9. King I. S., Sepúlveda F. V., Smith M. W. Cellular distribution of neutral and basic amino acid transport systems in rabbit ileal mucosa. J Physiol. 1981;319:355–368. doi: 10.1113/jphysiol.1981.sp013913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leese H. J., Mansford K. R. The effect of insulin and insulin deficiency on the transport and metabolism of glucose by rat small intestine. J Physiol. 1971 Feb;212(3):819–838. doi: 10.1113/jphysiol.1971.sp009358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lorenz-Meyer H., Thiel F., Menge H., Gottesbüren H., Riecken E. O. Structural and functional studies on the transformation of the intestinal mucosa in rats with experimental diabetes. Res Exp Med (Berl) 1977 Jun 29;170(2):89–99. doi: 10.1007/BF01851379. [DOI] [PubMed] [Google Scholar]
  12. Miller D. L., Hanson W., Schedl H. P., Osborne J. W. Proliferation rate and transit time of mucosal cells in small intestine of the diabetic rat. Gastroenterology. 1977 Dec;73(6):1326–1332. [PubMed] [Google Scholar]
  13. Schedl H. P., Wilson H. D. Effects of diabetes on intestinal growth and hexose transport in the rat. Am J Physiol. 1971 Jun;220(6):1739–1745. doi: 10.1152/ajplegacy.1971.220.6.1739. [DOI] [PubMed] [Google Scholar]
  14. Schultz S. G. Sodium-coupled solute transport of small intestine: a status report. Am J Physiol. 1977 Oct;233(4):E249–E254. doi: 10.1152/ajpendo.1977.233.4.E249. [DOI] [PubMed] [Google Scholar]
  15. Thompson C. S., Debnam E. S. Hyperglucagonaemia: effects on active nutrient uptake by the rat jejunum. J Endocrinol. 1986 Oct;111(1):37–42. doi: 10.1677/joe.0.1110037. [DOI] [PubMed] [Google Scholar]
  16. Thompson C. S., Debnam E. S. Starvation-induced changes in the autoradiographic localisation of valine uptake by rat small intestine. Experientia. 1986 Aug 15;42(8):945–948. doi: 10.1007/BF01941773. [DOI] [PubMed] [Google Scholar]
  17. Thomson A. B. Uptake of glucose into the intestine of diabetic rats: effects of variations in the effective resistance of the unstirred water layer. Diabetes. 1981 Mar;30(3):247–255. doi: 10.2337/diab.30.3.247. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES