Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Sep;390:367–382. doi: 10.1113/jphysiol.1987.sp016706

Some properties of a system for sodium-dependent outward movement of magnesium from metabolizing human red blood cells.

H Lüdi 1, H J Schatzmann 1
PMCID: PMC1192186  PMID: 3443939

Abstract

1. In agreement with the report by Féray & Garay (1986) it is shown that Mg2+ leaves human red cells mainly by a saturable pathway at a maximal rate of some 200 mumol 1(-1) cells h(-1) only if the medium contains Na+.Mg2+0.5 (i.e. the free Mg2+ concentration for half-maximal rate) at the internal membrane surface is 1.3 mM and the dissociation constant for Na+, KNa, at the external surface is 16-17 mM. Mg2+ shows co-operative behaviour. The Na+o-stimulated Mg2+ outflow is sensitive to millimolar amiloride concentrations. Implication of the Na+ or Ca+ pump can be ruled out. 2. Na+i is inhibitory by simple competition with Na+o. The affinity for Na+ inside is the same as outside. There is no detectable competition between Na+i and Mg2+i. 3. At approximately 1 mM-[Mg2+]i the outward Mg2+ movement stimulated by Na+o still proceeds when [Mg2+]o is increased up to 20 mM. Thus the Mg2+ movement is uphill and the apparent Mg2+0.5 at the external surface is larger than 20 mM. 4. Reversing the Na+ gradient (making [Na+]i greater than [Na+]o) does not elicit an inward Mg2+ movement, even if [Mg2+]o is simultaneously made larger than [Mg2+]i. 5. The Na+o-dependent Mg2+ outflow ceases nearly completely (falling to 5% of the control) in metabolically depleted cells. 6. The behaviour observed is compatible with the assumptions that (1) the system possesses distinct binding sites for Na+ and for Mg2+, (2) the ionophoric moiety is passively mobile when loaded with Na+, (3) the movement of the Na+ form is rate limiting, and (4) the Mg2+ form preferentially moves in the outward direction owing to an input of metabolic energy (ATP hydrolysis) and is immobile in starved cells. 7. Mg2+ may be required at a further site(s) not involved in the actual Mg2+ translocation but in the energy input. The simple kinetics suggesting translocation of one Na+ ion in exchange for one Mg2+ ion were found in selected cells of average maximum transport rate (Vmax) and may not hold for all cell specimens. 8. The conclusion is that the system is a Mg2+ extrusion pump driven by metabolic energy directly and not by the inward Na+ gradient, although net inward Na+ movement is necessary to bring the ionophoric part of the system back to the in-position. It appears that in intact cells the system operates far below saturation by Mg2+i and, by compensating for an inward leak of less than 5 mumol,1(-1) cells h(-1), sets the internal free Mg2+ concentration at about 0.5 of the equilibrium value.

Full text

PDF
367

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Crawford A. C. Mobility and transport of magnesium in squid giant axons. J Physiol. 1972 Dec;227(3):855–874. doi: 10.1113/jphysiol.1972.sp010062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baylor S. M., Chandler W. K., Marshall M. W. Optical measurements of intracellular pH and magnesium in frog skeletal muscle fibres. J Physiol. 1982 Oct;331:105–137. doi: 10.1113/jphysiol.1982.sp014367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berenblum I., Chain E. Studies on the colorimetric determination of phosphate. Biochem J. 1938 Feb;32(2):286–294. doi: 10.1042/bj0320286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blatter L. A., McGuigan J. A. Free intracellular magnesium concentration in ferret ventricular muscle measured with ion selective micro-electrodes. Q J Exp Physiol. 1986 Jul;71(3):467–473. doi: 10.1113/expphysiol.1986.sp003005. [DOI] [PubMed] [Google Scholar]
  5. Ferreira H. G., Lew V. L. Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca. Nature. 1976 Jan 1;259(5538):47–49. doi: 10.1038/259047a0. [DOI] [PubMed] [Google Scholar]
  6. Flatman P. W., Lew V. L. Magnesium buffering in intact human red blood cells measured using the ionophore A23187. J Physiol. 1980 Aug;305:13–30. doi: 10.1113/jphysiol.1980.sp013346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flatman P. W. Magnesium transport across cell membranes. J Membr Biol. 1984;80(1):1–14. doi: 10.1007/BF01868686. [DOI] [PubMed] [Google Scholar]
  8. Flatman P., Lew V. L. Use of ionophore A23187 to measure and to control free and bound cytoplasmic Mg in intact red cells. Nature. 1977 May 26;267(5609):360–362. doi: 10.1038/267360a0. [DOI] [PubMed] [Google Scholar]
  9. Féray J. C., Garay R. An Na+-stimulated Mg2+-transport system in human red blood cells. Biochim Biophys Acta. 1986 Mar 27;856(1):76–84. doi: 10.1016/0005-2736(86)90012-x. [DOI] [PubMed] [Google Scholar]
  10. GINSBURG S., SMITH J. G., GINSBURG F. M., REARDON J. Z., AIKAWA J. K. Magnesium metabolism of human and rabbit erythrocytes. Blood. 1962 Dec;20:722–729. [PubMed] [Google Scholar]
  11. Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garrahan P. J., Rega A. F. Cation loading of red blood cells. J Physiol. 1967 Nov;193(2):459–466. doi: 10.1113/jphysiol.1967.sp008371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gupta R. K., Moore R. D. 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem. 1980 May 10;255(9):3987–3993. [PubMed] [Google Scholar]
  14. Günther T., Vormann J. Mg2+ efflux is accomplished by an amiloride-sensitive Na+/Mg2+ antiport. Biochem Biophys Res Commun. 1985 Jul 31;130(2):540–545. doi: 10.1016/0006-291x(85)90450-4. [DOI] [PubMed] [Google Scholar]
  15. Güther T., Vormann J., Förster R. Regulation of intracellular magnesium by Mg2+ efflux. Biochem Biophys Res Commun. 1984 Feb 29;119(1):124–131. doi: 10.1016/0006-291x(84)91627-9. [DOI] [PubMed] [Google Scholar]
  16. Lloyd S., Pickford M. The effect of oxytocin and adrenaline on blood flow in the hind limb of the dog following chronic lumbar sympathectomy. J Physiol. 1967 Sep;192(1):43–52. doi: 10.1113/jphysiol.1967.sp008286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mullins L. J. A mechanism for Na/Ca transport. J Gen Physiol. 1977 Dec;70(6):681–695. doi: 10.1085/jgp.70.6.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sarkadi B., Szász I., Gárdos G. The use of ionophores of rapid loading of human red cells with radioactive cations for cation-pump studies. J Membr Biol. 1976 May;26(4):357–370. doi: 10.1007/BF01868883. [DOI] [PubMed] [Google Scholar]
  20. Schatzmann H. J. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol. 1973 Dec;235(2):551–569. doi: 10.1113/jphysiol.1973.sp010403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Walser M. Magnesium metabolism. Ergeb Physiol. 1967;59:185–296. doi: 10.1007/BF02269144. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES