Abstract
1. Voltage-clamp experiments have been performed on ovulated mouse eggs using the whole-cell recording technique. 2. Whole-cell recording offers improved signal-to-noise ratio and excellent stability over time. This allowed the study of the Ca2+ current of these eggs under physiological conditions (i.e. 1.7 mM-external Ca2+ and 37 degrees C). 3. In these conditions a negative shift of the reversal potential of the current (about -25 mV) and also of the activation and inactivation parameters (about -10 mV) compared with those recorded in 20 mM-external Ca2+ is found. 4. No significant diminution of the inward current was detected when external Na+ was substituted with impermeant cations, indicating no relevant participation of Na+ to the current in physiological conditions. 5. In a medium free of divalent cations a large inward current appeared, together with a large decrease in membrane resistance. 6. In Ca2+-free medium containing 1.2 mM-Mg2+ the inward current was largely suppressed, while an outward transient current appeared for depolarizations greater than +10 mV. 7. The 'outward surge current' previously described in this preparation appears to possess the same inactivation time constant and the same steady-state inactivation curve as the inward Ca2+ current. This suggests that the two currents flow through the same channels. 8. The time constant of inactivation was the same for both inward and outward currents and was independent of the current amplitude. These observations exclude a Ca2+-induced type of inactivation. 9. The channel which physiologically carries the Ca2+ current in mouse eggs belongs then to the class of Ca2+ channels that owe their selectivity to high-affinity Ca2+ binding sites.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almers W., McCleskey E. W. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiol. 1984 Aug;353:585–608. doi: 10.1113/jphysiol.1984.sp015352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almers W., McCleskey E. W., Palade P. T. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J Physiol. 1984 Aug;353:565–583. doi: 10.1113/jphysiol.1984.sp015351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbone E., Lux H. D. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 1984 Aug 9;310(5977):501–502. doi: 10.1038/310501a0. [DOI] [PubMed] [Google Scholar]
- Cuthbertson K. S., Whittingham D. G., Cobbold P. H. Free Ca2+ increases in exponential phases during mouse oocyte activation. Nature. 1981 Dec 24;294(5843):754–757. doi: 10.1038/294754a0. [DOI] [PubMed] [Google Scholar]
- Fukushima Y., Hagiwara S. Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes. J Physiol. 1985 Jan;358:255–284. doi: 10.1113/jphysiol.1985.sp015550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulton B. P., Whittingham D. G. Activation of mammalian oocytes by intracellular injection of calcium. Nature. 1978 May 11;273(5658):149–151. doi: 10.1038/273149a0. [DOI] [PubMed] [Google Scholar]
- Hess P., Tsien R. W. Mechanism of ion permeation through calcium channels. 1984 May 31-Jun 6Nature. 309(5967):453–456. doi: 10.1038/309453a0. [DOI] [PubMed] [Google Scholar]
- Hironaka T., Morimoto S. The resting membrane potential of frog sartorius muscle. J Physiol. 1979 Dec;297(0):1–8. doi: 10.1113/jphysiol.1979.sp013024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Igusa Y., Miyazaki S. Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. J Physiol. 1983 Jul;340:611–632. doi: 10.1113/jphysiol.1983.sp014783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Igusa Y., Miyazaki S. Periodic increase of cytoplasmic free calcium in fertilized hamster eggs measured with calcium-sensitive electrodes. J Physiol. 1986 Aug;377:193–205. doi: 10.1113/jphysiol.1986.sp016181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Igusa Y., Miyazaki S., Yamashita N. Periodic hyperpolarizing responses in hamster and mouse eggs fertilized with mouse sperm. J Physiol. 1983 Jul;340:633–647. doi: 10.1113/jphysiol.1983.sp014784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe L. F. Calcium explosions as triggers of development. Ann N Y Acad Sci. 1980;339:86–101. doi: 10.1111/j.1749-6632.1980.tb15971.x. [DOI] [PubMed] [Google Scholar]
- Lee K. S., Tsien R. W. High selectivity of calcium channels in single dialysed heart cells of the guinea-pig. J Physiol. 1984 Sep;354:253–272. doi: 10.1113/jphysiol.1984.sp015374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levi R., DeFelice L. J. Sodium-conducting channels in cardiac membranes in low calcium. Biophys J. 1986 Jul;50(1):5–9. doi: 10.1016/S0006-3495(86)83433-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald T. F., Cavalié A., Trautwein W., Pelzer D. Voltage-dependent properties of macroscopic and elementary calcium channel currents in guinea pig ventricular myocytes. Pflugers Arch. 1986 May;406(5):437–448. doi: 10.1007/BF00583365. [DOI] [PubMed] [Google Scholar]
- Mitani S. The reduction of calcium current associated with early differentiation of the murine embryo. J Physiol. 1985 Jun;363:71–86. doi: 10.1113/jphysiol.1985.sp015696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
- Okamoto H., Takahashi K., Yamashita N. Ionic currents through the membrane of the mammalian oocyte and their comparison with those in the tunicate and sea urchin. J Physiol. 1977 May;267(2):465–495. doi: 10.1113/jphysiol.1977.sp011822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peres A. Calcium current in mouse eggs recorded with the tight-seal, whole-cell voltage-clamp technique. Cell Biol Int Rep. 1986 Feb;10(2):117–119. doi: 10.1016/0309-1651(86)90095-0. [DOI] [PubMed] [Google Scholar]
- Peres A. Resting membrane potential and inward current properties of mouse ovarian oocytes and eggs. Pflugers Arch. 1986 Nov;407(5):534–540. doi: 10.1007/BF00657512. [DOI] [PubMed] [Google Scholar]
- Wilson D. L., Morimoto K., Tsuda Y., Brown A. M. Interaction between calcium ions and surface charge as it relates to calcium currents. J Membr Biol. 1983;72(1-2):117–130. doi: 10.1007/BF01870319. [DOI] [PubMed] [Google Scholar]
- Yamashita N. Enhancement of ionic currents through voltage-gated channels in the mouse oocyte after fertilization. J Physiol. 1982 Aug;329:263–280. doi: 10.1113/jphysiol.1982.sp014302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida S. Action potentials dependent on monovalent cations in developing mouse embryos. Dev Biol. 1985 Jul;110(1):200–206. doi: 10.1016/0012-1606(85)90076-4. [DOI] [PubMed] [Google Scholar]
- Yoshida S. Na and Ca spikes produced by ions passing through Ca channels in mouse ovarian oocytes. Pflugers Arch. 1982 Oct;395(1):84–86. doi: 10.1007/BF00584975. [DOI] [PubMed] [Google Scholar]
- Yoshida S. Permeation of divalent and monovalent cations through the ovarian oocyte membrane of the mouse. J Physiol. 1983 Jun;339:631–642. doi: 10.1113/jphysiol.1983.sp014739. [DOI] [PMC free article] [PubMed] [Google Scholar]
