Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Mar;384:49–79. doi: 10.1113/jphysiol.1987.sp016443

The receptive-field spatial structure of cat retinal Y cells.

C Enroth-Cugell 1, A W Freeman 1
PMCID: PMC1192251  PMID: 3656154

Abstract

1. Y-type ganglion cells in the cat's retina were stimulated with bars of light and grating patterns at photopic luminances. Stimuli were stationary, and luminance at each point was varied sinusoidally in time at 2 Hz. Impulse rates were recorded from single cells. 2. When the stimulus was a narrow bar of light, the impulse rate approached a sinusoidal function of time as contrast was reduced. The linear behaviour of each cell was therefore characterized by taking the limit of response parameters as contrast approached zero. 3. The ratio of surround strength to centre strength varied widely between cells but the two strengths were approximately equal on average. The difference between surround phase and centre phase averaged 168 deg. 4. As contrast increased, responses became rectified. Rectifier output was well described by a power law of stimulus amplitude, where the power was usually 1.4 or 1.5. 5. Response phase advanced with increasing contrast, and at high response amplitudes grew less than proportionally with contrast. These effects were assumed due to the contrast gain control described by Shapley & Victor (1978). 6. Gratings in which luminance varied sinusoidally with distance were used to determine Y cell spatial resolution. The second-harmonic amplitude of the response diminished rapidly with increasing spatial frequency: the radius of the best-fitting Gaussian mechanism was about 0.25 deg for a cell at 10 deg eccentricity. 7. This spatial resolution is close to the linear resolution of X cells as determined by Linsenmeier, Frishman, Jakiela & Enroth-Cugell (1982). 8. A receptive field model incorporating both linear and non-linear elements is described. The model consists of an array of subunit pathways, each of which has a centre-surround organization followed by a rectifier; a pool weights and sums subunit outputs, and signals are then passed through a contrast gain control. 9. The model accounts qualitatively for the over-all centre-surround organization of Y cell linear responses, the dependence of frequency-doubled responses on spatial frequency, and impulse rate as a function of time for a variety of bar and grating stimuli.

Full text

PDF
49

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cleland B. G., Harding T. H., Tulunay-Keesey U. Visual resolution and receptive field size: examination of two kinds of cat retinal ganglion cell. Science. 1979 Sep 7;205(4410):1015–1017. doi: 10.1126/science.472720. [DOI] [PubMed] [Google Scholar]
  3. Cleland B. G., Levick W. R. Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J Physiol. 1974 Jul;240(2):421–456. doi: 10.1113/jphysiol.1974.sp010617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Derrington A. M., Lennie P. The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat. J Physiol. 1982 Dec;333:343–366. doi: 10.1113/jphysiol.1982.sp014457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Enroth-Cugell C., Hertz G., Lennie P. Cone signals in the cat's retina. J Physiol. 1977 Jul;269(2):273–296. doi: 10.1113/jphysiol.1977.sp011902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enroth-Cugell C., Robson J. G., Schweitzer-Tong D. E., Watson A. B. Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. J Physiol. 1983 Aug;341:279–307. doi: 10.1113/jphysiol.1983.sp014806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frishman L. J., Linsenmeier R. A. Effects of picrotoxin and strychnine on non-linear responses of Y-type cat retinal ganglion cells. J Physiol. 1982 Mar;324:347–363. doi: 10.1113/jphysiol.1982.sp014116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hochstein S., Shapley R. M. Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J Physiol. 1976 Nov;262(2):265–284. doi: 10.1113/jphysiol.1976.sp011595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hochstein S., Shapley R. M. Quantitative analysis of retinal ganglion cell classifications. J Physiol. 1976 Nov;262(2):237–264. doi: 10.1113/jphysiol.1976.sp011594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Linsenmeier R. A., Frishman L. J., Jakiela H. G., Enroth-Cugell C. Receptive field properties of x and y cells in the cat retina derived from contrast sensitivity measurements. Vision Res. 1982;22(9):1173–1183. doi: 10.1016/0042-6989(82)90082-7. [DOI] [PubMed] [Google Scholar]
  12. Nikara T., Bishop P. O., Pettigrew J. D. Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp Brain Res. 1968;6(4):353–372. doi: 10.1007/BF00233184. [DOI] [PubMed] [Google Scholar]
  13. Peichl L., Wässle H. Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. J Physiol. 1979 Jun;291:117–141. doi: 10.1113/jphysiol.1979.sp012803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shapley R. M., Victor J. D. How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. J Physiol. 1981 Sep;318:161–179. doi: 10.1113/jphysiol.1981.sp013856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shapley R. M., Victor J. D. The effect of contrast on the transfer properties of cat retinal ganglion cells. J Physiol. 1978 Dec;285:275–298. doi: 10.1113/jphysiol.1978.sp012571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. So Y. T., Shapley R. Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction veolcities of their inputs. Exp Brain Res. 1979 Aug 1;36(3):533–550. doi: 10.1007/BF00238521. [DOI] [PubMed] [Google Scholar]
  17. Victor J. D., Shapley R. M. The nonlinear pathway of Y ganglion cells in the cat retina. J Gen Physiol. 1979 Dec;74(6):671–689. doi: 10.1085/jgp.74.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WIESEL T. N. Receptive fields of ganglion cells in the cat's retina. J Physiol. 1960 Oct;153:583–594. doi: 10.1113/jphysiol.1960.sp006557. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES