Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Mar;384:479–490. doi: 10.1113/jphysiol.1987.sp016465

Phosphate transport in brush-border membranes from control and rachitic pig kidney and small intestine.

M Brandis 1, J Harmeyer 1, R Kaune 1, M Mohrmann 1, H Murer 1, Z Zimolo 1
PMCID: PMC1192273  PMID: 2821238

Abstract

1. Na-Pi co-transport was analysed using renal cortical and small intestinal brush-border membrane vesicles which were isolated from control (normal, heterozygotes) and rachitic piglets (homozygotes). 2. A kinetic analysis of Na-dependent initial linear uptake of Pi was performed using vesicles obtained from control animals. The results suggest similar kinetic properties for the renal and small intestinal co-transport system. (i) A sigmoidal dependence on Na concentration of Pi uptake suggests the involvement of more than one Na ion in the co-transport. (ii) Increasing Na concentration leads to an increase in the apparent affinity of the transport system for Pi and has minimal effect on the apparent Vmax (maximum velocity of uptake). (iii) Increasing pH leads to an increase in Pi transport rate. 3. The kinetic characteristics of the Na-Pi co-transport system in vesicles obtained from rachitic animals were similar to those in controls. The apparent Vmax, but not the apparent Km (Michaelis constant) for Na and Pi, is reduced in intestinal and renal brush-border membranes isolated from rachitic animals as compared to control animals. Injection of vitamin D3, three days prior to killing of rachitic litter-mates, increased the Na-Pi uptake rate in the brush-border membrane vesicles isolated from these piglets. 4. It is concluded that intestinal and renal brush-border membranes from piglets contain a similar Na-Pi co-transport system and that in vitamin-D-dependent rickets the number of operating transport units is reduced in both membranes.

Full text

PDF
479

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amstutz M., Mohrmann M., Gmaj P., Murer H. Effect of pH on phosphate transport in rat renal brush border membrane vesicles. Am J Physiol. 1985 May;248(5 Pt 2):F705–F710. doi: 10.1152/ajprenal.1985.248.5.F705. [DOI] [PubMed] [Google Scholar]
  2. Berner W., Kinne R., Murer H. Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem J. 1976 Dec 15;160(3):467–474. doi: 10.1042/bj1600467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berner W., Kinne R. Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pflugers Arch. 1976 Feb 24;361(3):269–277. doi: 10.1007/BF00587292. [DOI] [PubMed] [Google Scholar]
  4. Biber J., Stieger B., Haase W., Murer H. A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim Biophys Acta. 1981 Oct 2;647(2):169–176. doi: 10.1016/0005-2736(81)90243-1. [DOI] [PubMed] [Google Scholar]
  5. Bikle D. D., Morrissey R. L., Zolock D. T., Rasmussen H. The intestinal response to vitamin D. Rev Physiol Biochem Pharmacol. 1981;89:63–142. doi: 10.1007/BFb0035265. [DOI] [PubMed] [Google Scholar]
  6. Binder H. J., Murer H. Potassium/proton exchange in brush-border membrane of rat ileum. J Membr Biol. 1986;91(1):77–84. doi: 10.1007/BF01870217. [DOI] [PubMed] [Google Scholar]
  7. Bonjour J. P., Caverzasio J. Phosphate transport in the kidney. Rev Physiol Biochem Pharmacol. 1984;100:161–214. doi: 10.1007/3540133275_4. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  9. Cheng L., Sacktor B. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. J Biol Chem. 1981 Feb 25;256(4):1556–1564. [PubMed] [Google Scholar]
  10. Danisi G., Murer H., Straub R. W. Effect of pH on phosphate transport into intestinal brush-border membrane vesicles. Am J Physiol. 1984 Feb;246(2 Pt 1):G180–G186. doi: 10.1152/ajpgi.1984.246.2.G180. [DOI] [PubMed] [Google Scholar]
  11. Gmaj P., Murer H. Cellular mechanisms of inorganic phosphate transport in kidney. Physiol Rev. 1986 Jan;66(1):36–70. doi: 10.1152/physrev.1986.66.1.36. [DOI] [PubMed] [Google Scholar]
  12. Grant J. D. Infiltration of the Right Half of the Larynx of Obscure Nature in a Woman, aged 34. Proc R Soc Med. 1910;3(LARYNGOL):146–147. [PMC free article] [PubMed] [Google Scholar]
  13. Haase W., Schäfer A., Murer H., Kinne R. Studies on the orientation of brush-border membrane vesicles. Biochem J. 1978 Apr 15;172(1):57–62. doi: 10.1042/bj1720057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harmeyer J., Martens H., Vogelgesang G. Intestinale aminosäurenabsorption bei erblicher rachitis. Z Kinderheilkd. 1975;119(4):245–251. [PubMed] [Google Scholar]
  15. Harmeyer J., Plonait H. Generalisierte Hyperaminoacidurie mit erblicher Rachitis bei Schweinen. Helv Paediatr Acta. 1967 May;22(2):216–229. [PubMed] [Google Scholar]
  16. Kessler M., Tannenbaum V., Tannenbaum C. A simple apparatus for performing short-time (1--2 seconds) uptake measurements in small volumes; its application to D-glucose transport studies in brush border vesicles from rabbit jejunum and ileum. Biochim Biophys Acta. 1978 May 18;509(2):348–359. doi: 10.1016/0005-2736(78)90053-6. [DOI] [PubMed] [Google Scholar]
  17. Meyer H., Plonait H. Uber eine erbliche Kalziumstoffwechselstörung beim Schwein (erbliche Rachitis) Zentralbl Veterinarmed A. 1968;15(6):481–483. [PubMed] [Google Scholar]
  18. Murer H., Hildmann B. Transcellular transport of calcium and inorganic phosphate in the small intestinal epithelium. Am J Physiol. 1981 Jun;240(6):G409–G416. doi: 10.1152/ajpgi.1981.240.6.G409. [DOI] [PubMed] [Google Scholar]
  19. Plonait H. Erbliche Rachitis der Saugferkel: Pathogenese und Therapie. Zentralbl Veterinarmed A. 1969 Jun;16(4):289–316. [PubMed] [Google Scholar]
  20. Sacktor B., Cheng L. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. Effect of an intravesicular greater than extravesicular proton gradient. J Biol Chem. 1981 Aug 10;256(15):8080–8084. [PubMed] [Google Scholar]
  21. Wilke R., Harmeyer J., von Grabe C., Hehrmann R., Hesch R. D. Regulatory hyperparathyroidism in a pig breed with vitamin D dependency rickets. Acta Endocrinol (Copenh) 1979 Oct;92(2):295–308. doi: 10.1530/acta.0.0920295. [DOI] [PubMed] [Google Scholar]
  22. Winkler I., Schreiner F., Harmeyer J. Absence of renal 25-hydroxycholecalciferol-1-hydroxylase activity in a pig strain with vitamin D-dependent rickets. Calcif Tissue Int. 1986 Feb;38(2):87–94. doi: 10.1007/BF02556835. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES