Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Mar;384:587–601. doi: 10.1113/jphysiol.1987.sp016471

The ventral and dorsal lateral geniculate nucleus of the rat: intracellular recordings in vitro.

V Crunelli 1, J S Kelly 1, N Leresche 1, M Pirchio 1
PMCID: PMC1192279  PMID: 3309264

Abstract

1. The membrane properties and the electrotonic structure of neurones in the ventral and dorsal lateral geniculate nucleus (l.g.n.) of the rat were studied using an in vitro slice preparation. 2. Following electrophysiological characterization, horseradish peroxidase (HRP) was injected intrasomatically and the morphological features of impaled cells were characteristic of principal neurones of the rat ventral and dorsal l.g.n. 3. Neurones in the ventral l.g.n. had a higher input resistance but similar membrane time constants (tau o) and resting potentials than cells in the dorsal l.g.n. 4. Using a simple neuronal model, the electrotonic length (L) and the dendritic to somatic conductance ratio (rho) were calculated and found to be similar for cells in both divisions of the l.g.n. The mean value of L (0.7) and rho (1.5) suggest that both groups of neurones are electrotonically compact. 5. The width and after-hyperpolarization of directly evoked action potentials, but not their threshold or their amplitude, were different between cells of the ventral and dorsal l.g.n. 6. At potentials more negative than -55 mV, a slow rising and falling potential could be evoked in each neurone (n = 310) of the dorsal l.g.n. but only in three cells of the ventral l.g.n. (n = 94). The electrophysiological and pharmacological properties of this potential were identical with those of the low-threshold Ca2+-dependent potential observed in other thalamic nuclei. 7. These results indicate that some of the passive and active membrane properties of ventral and dorsal l.g.n. neurones are different. The implications of these findings for the control of the integrative capability and the response of l.g.n. neurones to visual stimulation are discussed.

Full text

PDF
587

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brauer K., Schober W. Identification of geniculo-tectal relay neurons in the rat's ventral lateral geniculate nucleus. Exp Brain Res. 1982;45(1-2):84–88. doi: 10.1007/BF00235765. [DOI] [PubMed] [Google Scholar]
  2. Brauer K., Schober W., Leibnitz L., Werner L., Lüth H. J., Winkelmann E. The ventral lateral geniculate nucleus of the albino rat morphological and histochemical observations. J Hirnforsch. 1984;25(2):205–236. [PubMed] [Google Scholar]
  3. Brauer K., Schober W. Qualitative und quantitative Untersuchungen am Corpus geniculatum laterale (Cgl) der Laborratte. I. Zur Struktur des Cgl unter besonderer Berücksichtigung der Golgi-Architektonik. J Hirnforsch. 1973;14(4):389–398. [PubMed] [Google Scholar]
  4. Brown T. H., Fricke R. A., Perkel D. H. Passive electrical constants in three classes of hippocampal neurons. J Neurophysiol. 1981 Oct;46(4):812–827. doi: 10.1152/jn.1981.46.4.812. [DOI] [PubMed] [Google Scholar]
  5. Brown T. H., Perkel D. H., Norris J. C., Peacock J. H. Electrotonic structure and specific membrane properties of mouse dorsal root ganglion neurons. J Neurophysiol. 1981 Jan;45(1):1–15. doi: 10.1152/jn.1981.45.1.1. [DOI] [PubMed] [Google Scholar]
  6. Burke W., Jervie Sefton A. Discharge patterns of principal cells and interneurones in lateral geniculate nucleus of rat. J Physiol. 1966 Nov;187(1):201–212. doi: 10.1113/jphysiol.1966.sp008083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burke W., Jervie Sefton A. Inhibitory mechanisms in lateral geniculate nucleus of rat. J Physiol. 1966 Nov;187(1):231–246. doi: 10.1113/jphysiol.1966.sp008085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Constanti A., Galvan M. Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones. J Physiol. 1983 Feb;335:153–178. doi: 10.1113/jphysiol.1983.sp014526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crunelli V., Kelly J. S., Leresche N., Pirchio M. On the excitatory post-synaptic potential evoked by stimulation of the optic tract in the rat lateral geniculate nucleus. J Physiol. 1987 Mar;384:603–618. doi: 10.1113/jphysiol.1987.sp016472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deschênes M., Paradis M., Roy J. P., Steriade M. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol. 1984 Jun;51(6):1196–1219. doi: 10.1152/jn.1984.51.6.1196. [DOI] [PubMed] [Google Scholar]
  11. Fourment A., Hirsch J. C., Marc M. E. Oscillations of the spontaneous slow-wave sleep rhythm in lateral geniculate nucleus relay neurons of behaving cats. Neuroscience. 1985 Apr;14(4):1061–1075. doi: 10.1016/0306-4522(85)90277-5. [DOI] [PubMed] [Google Scholar]
  12. Grossman A., Lieberman A. R., Webster K. E. A Golgi study of the rat dorsal lateral geniculate nucleus. J Comp Neurol. 1973 Aug;150(4):441–466. doi: 10.1002/cne.901500404. [DOI] [PubMed] [Google Scholar]
  13. Haas H. L., Schaerer B., Vosmansky M. A simple perfusion chamber for the study of nervous tissue slices in vitro. J Neurosci Methods. 1979 Dec;1(4):323–325. doi: 10.1016/0165-0270(79)90021-9. [DOI] [PubMed] [Google Scholar]
  14. Hale P. T., Sefton A. J. A comparison of the visual and electrical response properties of cells in the dorsal and ventral lateral geniculate nuclei. Brain Res. 1978 Sep 29;153(3):591–595. doi: 10.1016/0006-8993(78)90343-8. [DOI] [PubMed] [Google Scholar]
  15. Jahnsen H., Llinás R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol. 1984 Apr;349:205–226. doi: 10.1113/jphysiol.1984.sp015153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jahnsen H., Llinás R. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol. 1984 Apr;349:227–247. doi: 10.1113/jphysiol.1984.sp015154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnston D. Passive cable properties of hippocampal CA3 pyramidal neurons. Cell Mol Neurobiol. 1981 Mar;1(1):41–55. doi: 10.1007/BF00736038. [DOI] [PubMed] [Google Scholar]
  18. Kelly J. S., Godfraind J. M., Maruyama S. The presence and nature of inhibition in small slices of the dorsal lateral geniculate nucleus of rat and cat incubated in vitro. Brain Res. 1979 May 25;168(2):388–392. doi: 10.1016/0006-8993(79)90180-x. [DOI] [PubMed] [Google Scholar]
  19. Kriebel R. M. Neurons of the dorsal lateral geniculate nucleus of the albino rat. J Comp Neurol. 1975 Jan 1;159(1):45–67. doi: 10.1002/cne.901590105. [DOI] [PubMed] [Google Scholar]
  20. Lieberman A. R., Webster K. E. Aspects of the synaptic organization of intrinsic neurons in the dorsal lateral geniculate nucleus. An ultrastructural study of the normal and of the experimentally deafferented nucleus in the rat. J Neurocytol. 1974 Dec;3(6):677–710. doi: 10.1007/BF01097191. [DOI] [PubMed] [Google Scholar]
  21. Lieberman A. R., Webster K. E. Presynaptic dendrites and a distinctive class of synaptic vesicle in the rat dorsal lateral geniculate nucleus. Brain Res. 1972 Jul 13;42(1):196–200. doi: 10.1016/0006-8993(72)90053-4. [DOI] [PubMed] [Google Scholar]
  22. Mounty E. J., Parnavelas J. G., Lieberman A. R. The neurons and their postnatal development in the ventral lateral geniculate nucleus of the rat. Anat Embryol (Berl) 1977 Aug 9;151(1):35–51. doi: 10.1007/BF00315296. [DOI] [PubMed] [Google Scholar]
  23. Ohara P. T., Lieberman A. R., Hunt S. P., Wu J. Y. Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat; immunohistochemical studies by light and electron microscopy. Neuroscience. 1983;8(2):189–211. doi: 10.1016/0306-4522(83)90060-x. [DOI] [PubMed] [Google Scholar]
  24. Parnavelas J. G., Mounty E. J., Bradford R., Lieberman A. R. The postnatal development of neurons in the dorsal lateral geniculate nucleus of the rat: a Golgi study. J Comp Neurol. 1977 Feb 15;171(4):481–499. doi: 10.1002/cne.901710405. [DOI] [PubMed] [Google Scholar]
  25. Ribak C. E., Peters A. An autoradiographic study of the projections from the lateral geniculate body of the rat. Brain Res. 1975 Jul 18;92(3):341–368. doi: 10.1016/0006-8993(75)90322-4. [DOI] [PubMed] [Google Scholar]
  26. Stafstrom C. E., Schwindt P. C., Crill W. E. Cable properties of layer V neurons. J Neurophysiol. 1985 Oct;54(4):1084–1084. doi: 10.1152/jn.1985.54.4.1084. [DOI] [PubMed] [Google Scholar]
  27. Stelzner D. J., Baisden R. H., Goodman D. C. The ventral lateral geniculate nucleus, pars lateralis of the rat. Synaptic organization and conditions for axonal sprouting. Cell Tissue Res. 1976 Aug 10;170(4):435–454. doi: 10.1007/BF00361703. [DOI] [PubMed] [Google Scholar]
  28. Steriade M., Deschenes M. The thalamus as a neuronal oscillator. Brain Res. 1984 Nov;320(1):1–63. doi: 10.1016/0165-0173(84)90017-1. [DOI] [PubMed] [Google Scholar]
  29. Sumitomo I., Nakamura M., Iwama K. Location and function of the so-called interneurons of rat lateral geniculate body. Exp Neurol. 1976 Apr;51(1):110–123. doi: 10.1016/0014-4886(76)90056-x. [DOI] [PubMed] [Google Scholar]
  30. Sumitomo I., Sugitani M., Fukuda Y., Iwama K. Properties of cells responding to visual stimuli in the rat ventral lateral geniculate nucleus. Exp Neurol. 1979 Dec;66(3):721–736. doi: 10.1016/0014-4886(79)90216-4. [DOI] [PubMed] [Google Scholar]
  31. Swanson L. W., Cowan W. M., Jones E. G. An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. J Comp Neurol. 1974 Jul;156(2):143–163. doi: 10.1002/cne.901560203. [DOI] [PubMed] [Google Scholar]
  32. Webster M. J., Rowe M. H. Morphology of identified relay cells and interneurons in the dorsal lateral geniculate nucleus of the rat. Exp Brain Res. 1984;56(3):468–474. doi: 10.1007/BF00237987. [DOI] [PubMed] [Google Scholar]
  33. Werner L., Krüger G. Qualitative und quantitative Untersuchungen am Corpus geniculatum laterale (Cgl) der Laborratte. 3. Differenzierung von Projektions- und Interneuronen im Nissl-Präparat und deren Topographie. Z Mikrosk Anat Forsch. 1973;87(5):701–729. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES