Abstract
1. The effects of peritubular ions and transport inhibitors were studied on methacholine (MCH)-induced sweat secretion by the isolated, cannulated monkey palm sweat glands in vitro and on the transepithelial and basolateral membrane potential (p.d.). 2. Sweat secretory rate was a curvilinear function of peritubular Na+ and Cl- concentration. Among the anion substitutes only Br- was able to totally substitute for Cl-. Presence of HCO3- or H2PO4- in the bath was not essential. 3. Both bumetanide and furosemide inhibited sweat secretion in a dose-dependent manner with the median effective concentration (EC50) of 3 X 10(-6) and 3 X 10(-5) M, respectively. 4. Bumetanide (10(-4) M) had no significant effect on basolateral membrane p.d. but nearly abolished the transepithelial p.d. 5. Hydrochlorothiazide (HCTZ, 3 X 10(-4) M) inhibited sweat secretion by only 35%. Inhibitors of ion exchangers amiloride (10(-4) M) and DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid, 10(-4) M) lowered sweat secretion by less than 20%. 6. Removal of peritubular K+ as well as addition of 5 mM-Ba2+ also inhibited sweat rate. 5 mM-Ba2+ abolished the transepithelial p.d. and depolarized the basolateral p.d. by 26 mV, although the effects of Ba2+ on sweating and the transepithelial p.d. were only transient. 7. The data raise a possibility that either the NaCl or Na+-K+-2Cl- co-transport system or both may be involved in MCH-induced sweat secretion, whereas the role of parallel ion exchangers, if any, may be rather minor.
Full text
PDF

















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvo M., Calamia J., Eveloff J. Lack of potassium effect on Na-Cl cotransport in the medullary thick ascending limb. Am J Physiol. 1985 Jul;249(1 Pt 2):F34–F39. doi: 10.1152/ajprenal.1985.249.1.F34. [DOI] [PubMed] [Google Scholar]
- Case R. M., Hunter M., Novak I., Young J. A. The anionic basis of fluid secretion by the rabbit mandibular salivary gland. J Physiol. 1984 Apr;349:619–630. doi: 10.1113/jphysiol.1984.sp015177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis C. W., Finn A. L. Effects of mucosal sodium removal on cell volume in Necturus gallbladder epithelium. Am J Physiol. 1985 Sep;249(3 Pt 1):C304–C312. doi: 10.1152/ajpcell.1985.249.3.C304. [DOI] [PubMed] [Google Scholar]
- Ericson A. C., Spring K. R. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am J Physiol. 1982 Sep;243(3):C140–C145. doi: 10.1152/ajpcell.1982.243.3.C140. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Halm D. R., Musch M. W., Stewart C. P., Field M. Potassium transport by flounder intestinal mucosa. Am J Physiol. 1984 Jun;246(6 Pt 2):F946–F951. doi: 10.1152/ajprenal.1984.246.6.F946. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Welsh M. J., Smith P. L. Electrophysiology of chloride-secreting epithelia. Soc Gen Physiol Ser. 1981;36:137–145. [PubMed] [Google Scholar]
- Frömter E., Rumrich G., Ullrich K. J. Phenomenologic description of Na+, Cl- and HCO-3 absorption from proximal tubules of rat kidney. Pflugers Arch. 1973 Oct 22;343(3):189–220. doi: 10.1007/BF00586045. [DOI] [PubMed] [Google Scholar]
- Geck P., Pietrzyk C., Burckhardt B. C., Pfeiffer B., Heinz E. Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells. Biochim Biophys Acta. 1980 Aug 4;600(2):432–447. doi: 10.1016/0005-2736(80)90446-0. [DOI] [PubMed] [Google Scholar]
- Greger R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol Rev. 1985 Jul;65(3):760–797. doi: 10.1152/physrev.1985.65.3.760. [DOI] [PubMed] [Google Scholar]
- Hebert S. C., Andreoli T. E. Control of NaCl transport in the thick ascending limb. Am J Physiol. 1984 Jun;246(6 Pt 2):F745–F756. doi: 10.1152/ajprenal.1984.246.6.F745. [DOI] [PubMed] [Google Scholar]
- Koenig B., Ricapito S., Kinne R. Chloride transport in the thick ascending limb of Henle's loop: potassium dependence and stoichiometry of the NaCl cotransport system in plasma membrane vesicles. Pflugers Arch. 1983 Nov;399(3):173–179. doi: 10.1007/BF00656711. [DOI] [PubMed] [Google Scholar]
- Liedtke C. M., Hopfer U. Mechanism of Cl- translocation across small intestinal brush-border membrane. II. Demonstration of Cl--OH- exchange and Cl- conductance. Am J Physiol. 1982 Mar;242(3):G272–G280. doi: 10.1152/ajpgi.1982.242.3.G272. [DOI] [PubMed] [Google Scholar]
- Martinez J. R., Cassity N. Effect of transport inhibitors on secretion by perfused rat submandibular gland. Am J Physiol. 1983 Nov;245(5 Pt 1):G711–G716. doi: 10.1152/ajpgi.1983.245.5.G711. [DOI] [PubMed] [Google Scholar]
- Musch M. W., Orellana S. A., Kimberg L. S., Field M., Halm D. R., Krasny E. J., Jr, Frizzell R. A. Na+-K+-Cl- co-transport in the intestine of a marine teleost. Nature. 1982 Nov 25;300(5890):351–353. doi: 10.1038/300351a0. [DOI] [PubMed] [Google Scholar]
- Owen N. E., Prastein M. L. Na/K/Cl cotransport in cultured human fibroblasts. J Biol Chem. 1985 Feb 10;260(3):1445–1451. [PubMed] [Google Scholar]
- Palfrey H. C., Silva P., Epstein F. H. Sensitivity of cAMP-stimulated salt secretion in shark rectal gland to "loop" diuretics. Am J Physiol. 1984 Mar;246(3 Pt 1):C242–C246. doi: 10.1152/ajpcell.1984.246.3.C242. [DOI] [PubMed] [Google Scholar]
- Patarca R., Candia O. A., Reinach P. S. Mode of inhibition of active chloride transport in the frog cornea by furosemide. Am J Physiol. 1983 Dec;245(6):F660–F669. doi: 10.1152/ajprenal.1983.245.6.F660. [DOI] [PubMed] [Google Scholar]
- Sato K. Does acetylcholine change the electrical resistance of the basal membrane of secretory cells in eccrine sweat glands? J Membr Biol. 1978 Sep 18;42(2):123–151. doi: 10.1007/BF01885367. [DOI] [PubMed] [Google Scholar]
- Sato K. Effect of methacholine on ionic permeability of basal membrane of the eccrine secretory cell. Pflugers Arch. 1986;407 (Suppl 2):S100–S106. doi: 10.1007/BF00584937. [DOI] [PubMed] [Google Scholar]
- Sato K. Electrochemical driving forces for K+ secretion by rat paw eccrine sweat gland. Am J Physiol. 1980 Sep;239(3):C90–C97. doi: 10.1152/ajpcell.1980.239.3.C90. [DOI] [PubMed] [Google Scholar]
- Sato K., Sato F. Cholinergic potentiation of isoproterenol-induced cAMP level in sweat gland. Am J Physiol. 1983 Sep;245(3):C189–C195. doi: 10.1152/ajpcell.1983.245.3.C189. [DOI] [PubMed] [Google Scholar]
- Sato K., Sato F. Cyclic AMP accumulation in the beta adrenergic mechanism of eccrine sweat secretion. Pflugers Arch. 1981 Apr;390(1):49–53. doi: 10.1007/BF00582710. [DOI] [PubMed] [Google Scholar]
- Sato K., Sato F. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J Clin Invest. 1984 Jun;73(6):1763–1771. doi: 10.1172/JCI111385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato K., Sato F. Transepithelial potential during strontium-induced spontaneous sweating. Am J Physiol. 1982 May;242(5):C360–C365. doi: 10.1152/ajpcell.1982.242.5.C360. [DOI] [PubMed] [Google Scholar]
- Sato K. Sweat induction from an isolated eccrine sweat gland. Am J Physiol. 1973 Nov;225(5):1147–1152. doi: 10.1152/ajplegacy.1973.225.5.1147. [DOI] [PubMed] [Google Scholar]
- Sato K. The physiology, pharmacology, and biochemistry of the eccrine sweat gland. Rev Physiol Biochem Pharmacol. 1977;79:51–131. doi: 10.1007/BFb0037089. [DOI] [PubMed] [Google Scholar]
- Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate. J Membr Biol. 1984;77(3):187–199. doi: 10.1007/BF01870568. [DOI] [PubMed] [Google Scholar]
- Stokes J. B. Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide-sensitive, electrically neutral transport system. J Clin Invest. 1984 Jul;74(1):7–16. doi: 10.1172/JCI111420. [DOI] [PMC free article] [PubMed] [Google Scholar]