Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Dec;393:213–231. doi: 10.1113/jphysiol.1987.sp016820

The effects of noradrenaline on neurones in the rat dorsal motor nucleus of the vagus, in vitro.

A Fukuda 1, T Minami 1, J Nabekura 1, Y Oomura 1
PMCID: PMC1192390  PMID: 2895810

Abstract

1. Intracellular recordings were made from vagal motoneurones identified by antidromic stimulation in the dorsal motor nucleus of the vagus (d.m.v.) in slice preparations of rat medulla oblongata. 2. Noradrenaline (NA) applied by perfusion (0.01 microM to 1 mM) depolarized 55%, hyperpolarized 32% and produced a biphasic response (hyperpolarization followed by depolarization) in 9% of the d.m.v. neurones tested. 3. The NA effects persisted after complete elimination of synaptic inputs during perfusion with Ca2+-free high-Mg2+ solution, and therefore probably resulted from a direct action on the postsynaptic membranes. 4. The NA depolarization was blocked by prazosin and the NA hyperpolarization by yohimbine, but neither was blocked by propranolol or timolol. Phenoxybenzamine blocked both responses. The results indicate that NA depolarization is mediated by alpha 1-adrenoceptors and hyperpolarization by alpha 2-adrenoceptors. 5. The neurones which were depolarized by NA were also hyperpolarized by NA when the alpha 1-adrenoceptors were blocked by prazosin (all of seven neurones tested). This result suggests that most vagal motoneurones in the d.m.v. have both alpha 1-and alpha 2-adrenoceptors. 6. The NA depolarization was accompanied by a decrease in membrane conductance and the hyperpolarization by an increase in membrane conductance, both of which were measured under manual-clamp conditions. 7. The reversal potentials for the NA responses were around -85 mV in normal Ringer solution, and shifted as predicted by the Nernst equation when the extracellular K+ concentration was changed. 8. The inhibitory postsynaptic potentials evoked by focal electrical stimulation on the slice surface of the commissural part of the nucleus of the tractus solitarius (n.t.s.), which contains an A2 catecholaminergic cell group, were abolished by yohimbine. 9. The results suggest that NA modulates vagal output by decreasing or increasing the K+ conductance of d.m.v. neurones through alpha 1- or alpha 2-adrenoceptors. In addition, the A2 noradrenergic cell group within the n.t.s. may send inhibitory inputs to the d.m.v.

Full text

PDF
213

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajanian G. K., VanderMaelen C. P. alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science. 1982 Mar 12;215(4538):1394–1396. doi: 10.1126/science.6278591. [DOI] [PubMed] [Google Scholar]
  2. Akasu T., Gallagher J. P., Nakamura T., Shinnick-Gallagher P., Yoshimura M. Noradrenaline hyperpolarization and depolarization in cat vesical parasympathetic neurones. J Physiol. 1985 Apr;361:165–184. doi: 10.1113/jphysiol.1985.sp015639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blessing W. W., Frost P., Furness J. B. Catecholamine cell groups of the cat medulla oblongata. Brain Res. 1980 Jun 16;192(1):69–75. doi: 10.1016/0006-8993(80)91009-4. [DOI] [PubMed] [Google Scholar]
  4. Blessing W. W., Jaeger C. B., Ruggiero D. A., Reis D. J. Hypothalamic projections of medullary catecholamine neurons in the rabbit: a combined catecholamine fluorescence and HRP transport study. Brain Res Bull. 1982 Jul-Dec;9(1-6):279–286. doi: 10.1016/0361-9230(82)90141-1. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A., Caulfield M. P. Hyperpolarizing 'alpha 2'-adrenoceptors in rat sympathetic ganglia. Br J Pharmacol. 1979 Mar;65(3):435–445. doi: 10.1111/j.1476-5381.1979.tb07848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown D. A., Dunn P. M. Depolarization of rat isolated superior cervical ganglia mediated by beta 2-adrenoceptors. Br J Pharmacol. 1983 Jun;79(2):429–439. doi: 10.1111/j.1476-5381.1983.tb11016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grundy D., Salih A. A., Scratcherd T. Modulation of vagal efferent fibre discharge by mechanoreceptors in the stomach, duodenum and colon of the ferret. J Physiol. 1981;319:43–52. doi: 10.1113/jphysiol.1981.sp013890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harding R., Leek B. F. The locations and activities of medullary neurons associated with ruminant forestomach motility. J Physiol. 1971 Dec;219(3):587–610. doi: 10.1113/jphysiol.1971.sp009679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hwang B. H., Wu J. Y. Ultrastructural studies on catecholaminergic terminals and GABAergic neurons in nucleus tractus solitarius of the rat medulla oblongata. Brain Res. 1984 Jun 4;302(1):57–67. doi: 10.1016/0006-8993(84)91284-8. [DOI] [PubMed] [Google Scholar]
  10. Ionescu E., Rohner-Jeanrenaud F., Berthoud H. R., Jeanrenaud B. Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology. 1983 Mar;112(3):904–910. doi: 10.1210/endo-112-3-904. [DOI] [PubMed] [Google Scholar]
  11. Kalia M., Sullivan J. M. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol. 1982 Nov 1;211(3):248–265. doi: 10.1002/cne.902110304. [DOI] [PubMed] [Google Scholar]
  12. Loewy A. D., McKellar S., Saper C. B. Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res. 1979 Oct 5;174(2):309–314. doi: 10.1016/0006-8993(79)90852-7. [DOI] [PubMed] [Google Scholar]
  13. Madison D. V., Nicoll R. A. Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. J Physiol. 1986 Mar;372:221–244. doi: 10.1113/jphysiol.1986.sp016006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McLean J. H., Hopkins D. A. A light and electron microscopic study of the dorsal motor nucleus of the vagus nerve in the cat. J Comp Neurol. 1981 Jan 1;195(1):157–175. doi: 10.1002/cne.901950109. [DOI] [PubMed] [Google Scholar]
  15. Minami T., Oomura Y., Sugimori M. Electrophysiological properties and glucose responsiveness of guinea-pig ventromedial hypothalamic neurones in vitro. J Physiol. 1986 Nov;380:127–143. doi: 10.1113/jphysiol.1986.sp016276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moore S. D., Guyenet P. G. An electrophysiological study of the forebrain projection of nucleus commissuralis: preliminary identification of presumed A2 catecholaminergic neurons. Brain Res. 1983 Mar 21;263(2):211–222. doi: 10.1016/0006-8993(83)90314-1. [DOI] [PubMed] [Google Scholar]
  17. Morita K., North R. A. Clonidine activates membrane potassium conductance in myenteric neurones. Br J Pharmacol. 1981 Oct;74(2):419–428. doi: 10.1111/j.1476-5381.1981.tb09987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nabekura J., Oomura Y., Minami T., Mizuno Y., Fukuda A. Mechanism of the rapid effect of 17 beta-estradiol on medial amygdala neurons. Science. 1986 Jul 11;233(4760):226–228. doi: 10.1126/science.3726531. [DOI] [PubMed] [Google Scholar]
  19. North R. A., Yoshimura M. The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J Physiol. 1984 Apr;349:43–55. doi: 10.1113/jphysiol.1984.sp015141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rea M. A., Aprison M. H., Felten D. L. Catecholamines and serotonin in the caudal medulla of the rat: combined neurochemical-histofluorescence study. Brain Res Bull. 1982 Jul-Dec;9(1-6):227–236. doi: 10.1016/0361-9230(82)90135-6. [DOI] [PubMed] [Google Scholar]
  21. Ritchie T. C., Westlund K. N., Bowker R. M., Coulter J. D., Leonard R. B. The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei. Neuroscience. 1982 Jun;7(6):1471–1482. doi: 10.1016/0306-4522(82)90258-5. [DOI] [PubMed] [Google Scholar]
  22. Rogers R. C., Kita H., Butcher L. L., Novin D. Afferent projections to the dorsal motor nucleus of the vagus. Brain Res Bull. 1980 Jul-Aug;5(4):365–373. doi: 10.1016/s0361-9230(80)80006-2. [DOI] [PubMed] [Google Scholar]
  23. Sawchenko P. E., Swanson L. W. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. 1982 Nov;257(3):275–325. doi: 10.1016/0165-0173(82)90010-8. [DOI] [PubMed] [Google Scholar]
  24. Sumal K. K., Blessing W. W., Joh T. H., Reis D. J., Pickel V. M. Synaptic interaction of vagal afferents and catecholaminergic neurons in the rat nucleus tractus solitarius. Brain Res. 1983 Oct 24;277(1):31–40. doi: 10.1016/0006-8993(83)90904-6. [DOI] [PubMed] [Google Scholar]
  25. Swanson L. W., Kuypers H. G. A direct projection from the ventromedial nucleus and retrochiasmatic area of the hypothalamus to the medulla and spinal cord of the rat. Neurosci Lett. 1980 May 1;17(3):307–312. doi: 10.1016/0304-3940(80)90041-5. [DOI] [PubMed] [Google Scholar]
  26. Takahashi Y., Satoh K., Sakumoto T., Tohyama M., Shimizu N. A major source of catecholamine terminals in the nucleus tractus solitaril. Brain Res. 1979 Aug 24;172(2):372–377. doi: 10.1016/0006-8993(79)90549-3. [DOI] [PubMed] [Google Scholar]
  27. Weiss G. F., Leibowitz S. F. Efferent projections from the paraventricular nucleus mediating alpha 2-noradrenergic feeding. Brain Res. 1985 Nov 18;347(2):225–238. doi: 10.1016/0006-8993(85)90181-7. [DOI] [PubMed] [Google Scholar]
  28. Williams J. T., Henderson G., North R. A. Characterization of alpha 2-adrenoceptors which increase potassium conductance in rat locus coeruleus neurones. Neuroscience. 1985 Jan;14(1):95–101. doi: 10.1016/0306-4522(85)90166-6. [DOI] [PubMed] [Google Scholar]
  29. Wyrwicka W., Garcia R. Effect of electrical stimulation of the dorsal nucleus of the vagus nerve on gastric acid secretion in cats. Exp Neurol. 1979 Aug;65(2):315–325. doi: 10.1016/0014-4886(79)90101-8. [DOI] [PubMed] [Google Scholar]
  30. Yarom Y., Sugimori M., Llinás R. Ionic currents and firing patterns of mammalian vagal motoneurons in vitro. Neuroscience. 1985 Dec;16(4):719–737. doi: 10.1016/0306-4522(85)90090-9. [DOI] [PubMed] [Google Scholar]
  31. Young W. S., 3rd, Kuhar M. J. Noradrenergic alpha 1 and alpha 2 receptors: light microscopic autoradiographic localization. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1696–1700. doi: 10.1073/pnas.77.3.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. ter Horst G. J., Luiten P. G., Kuipers F. Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J Auton Nerv Syst. 1984 Jul;11(1):59–75. doi: 10.1016/0165-1838(84)90008-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES