Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Dec;393:233–245. doi: 10.1113/jphysiol.1987.sp016821

Calcium dependence of voltage sensitivity in adenosine 3',5'-cyclic phosphate-stimulated sodium current in Pleurobranchaea.

R Gillette 1, D J Green 1
PMCID: PMC1192391  PMID: 2451737

Abstract

1. Ionophoretic injection of cyclic AMP into a voltage-clamped molluscan neurone caused a transient slow inward current (Isi) whose amplitude was enhanced by depolarization. Na+-replaced salines abolished the current, placing it with cyclic AMP-stimulated Na+ currents of other gastropod species. 2. Isi amplitude was suppressed by extracellular Ca2+. The amplitude increased up to 4-fold at holding potentials of -50 mV in nominally Ca2+-free saline. Ion substitutions showed that Ca2+ suppressed Isi more effectively than Mg2+, Co2+, Cd2+, Mn2+, Ba2+ or Sr2+. 3. Voltage sensitivity of Isi was abolished by low-Ca2+ salines, by the Ca2+ current blocker Co2+ and by substitution of Ba2+ or Sr2+ as Ca2+ channel current carriers. In such salines Isi showed no appreciable change in amplitude at holding potentials between -70 and -25 mV. 4. Intracellular injection of the Ca2+ chelator EGTA both augmented the amplitude of the current and its duration. EGTA injection failed to suppress the Ca2+-dependent voltage sensitivity of Isi. Intracellular injection of concentrated 3-N-(morpholino) propanesulphonic acid (MOPS) pH buffer to inhibit secondary, Ca2+-dependent intracellular acidification also failed to suppress the voltage sensitivity, as did injections of a mixed EGTA and MOPS solution. 5. While the data indicate a requirement for extracellular Ca2+ in conferring voltage sensitivity, they do not support a role for an intracellular action. An extracellular binding site for Ca2+ could mediate the voltage sensitivity, either by local depolarization-dependent changes in extracellular Ca2+ concentration or through direct voltage-sensitive block of the Isi channel.

Full text

PDF
233

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed Z., Connor J. A. Intracellular pH changes induced by calcium influx during electrical activity in molluscan neurons. J Gen Physiol. 1980 Apr;75(4):403–426. doi: 10.1085/jgp.75.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aldenhoff J. B., Hofmeier G., Lux H. D., Swandulla D. Stimulation of a sodium influx by cAMP in Helix neurons. Brain Res. 1983 Oct 16;276(2):289–296. doi: 10.1016/0006-8993(83)90736-9. [DOI] [PubMed] [Google Scholar]
  3. Calhoon R. D., Gillette R. Ca2+ activated and pH sensitive cyclic AMP phosphodiesterase in the nervous system of the mollusc Pleurobranchaea. Brain Res. 1983 Jul 25;271(2):371–374. doi: 10.1016/0006-8993(83)90304-9. [DOI] [PubMed] [Google Scholar]
  4. Connor J. A., Hockberger P. A novel membrane sodium current induced by injection of cyclic nucleotides into gastropod neurones. J Physiol. 1984 Sep;354:139–162. doi: 10.1113/jphysiol.1984.sp015368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ewald D. A., Williams A., Levitan I. B. Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation. Nature. 1985 Jun 6;315(6019):503–506. doi: 10.1038/315503a0. [DOI] [PubMed] [Google Scholar]
  6. Gillette M. U., Gillette R. Bursting neurons command consummatory feeding behavior and coordinated visceral receptivity in the predatory mollusk Pleurobranchaea. J Neurosci. 1983 Sep;3(9):1791–1806. doi: 10.1523/JNEUROSCI.03-09-01791.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gillette R., Gillette M. U., Davis W. J. Action-potential broadening and endogenously sustained bursting are substrates of command ability in a feeding neuron of Pleurobranchaea. J Neurophysiol. 1980 Mar;43(3):669–685. doi: 10.1152/jn.1980.43.3.669. [DOI] [PubMed] [Google Scholar]
  8. Gillette R., Green D. J. Phenothiazines mimic the action of cAMP in potentiating slow inward current in a bursting molluscan neuron. Brain Res. 1983 Aug 29;273(2):384–386. doi: 10.1016/0006-8993(83)90868-5. [DOI] [PubMed] [Google Scholar]
  9. Gillette R. Intracellular alkalinization potentiates slow inward current and prolonged bursting in a molluscan neuron. J Neurophysiol. 1983 Feb;49(2):509–515. doi: 10.1152/jn.1983.49.2.509. [DOI] [PubMed] [Google Scholar]
  10. Green D. J., Gillette R. Patch- and voltage-clamp analysis of cyclic AMP-stimulated inward current underlying neurone bursting. Nature. 1983 Dec 22;306(5945):784–785. doi: 10.1038/306784a0. [DOI] [PubMed] [Google Scholar]
  11. Kaczmarek L. K., Jennings K. R., Strumwasser F., Nairn A. C., Walter U., Wilson F. D., Greengard P. Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7487–7491. doi: 10.1073/pnas.77.12.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kirk M. D., Scheller R. H. Egg-laying hormone of Aplysia induces a voltage-dependent slow inward current carried by Na+ in an identified motoneuron. Proc Natl Acad Sci U S A. 1986 May;83(9):3017–3021. doi: 10.1073/pnas.83.9.3017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kononenko N. I., Kostyuk P. G., Shcherbatko A. D. The effect of intracellular cAMP injections on stationary membrane conductance and voltage- and time-dependent ionic currents in identified snail neurons. Brain Res. 1983 Jun 6;268(2):321–338. doi: 10.1016/0006-8993(83)90499-7. [DOI] [PubMed] [Google Scholar]
  14. Kramer R. H., Zucker R. S. Calcium-dependent inward current in Aplysia bursting pace-maker neurones. J Physiol. 1985 May;362:107–130. doi: 10.1113/jphysiol.1985.sp015666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kramer R. H., Zucker R. S. Calcium-induced inactivation of calcium current causes the inter-burst hyperpolarization of Aplysia bursting neurones. J Physiol. 1985 May;362:131–160. doi: 10.1113/jphysiol.1985.sp015667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mayer M. L., Westbrook G. L. The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J Physiol. 1985 Apr;361:65–90. doi: 10.1113/jphysiol.1985.sp015633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meech R. W., Thomas R. C. Effect of measured calcium chloride injections on the membrane potential and internal pH of snail neurones. J Physiol. 1980 Jan;298:111–129. doi: 10.1113/jphysiol.1980.sp013070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
  19. Swandulla D., Lux H. D. Changes in ionic conductances induced by cAMP in Helix neurons. Brain Res. 1984 Jul 2;305(1):115–122. doi: 10.1016/0006-8993(84)91126-0. [DOI] [PubMed] [Google Scholar]
  20. Yamamoto D., Yeh J. Z., Narahashi T. Voltage-dependent calcium block of normal and tetramethrin-modified single sodium channels. Biophys J. 1984 Jan;45(1):337–344. doi: 10.1016/S0006-3495(84)84159-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES