Abstract
1. The membrane potential and permeabilities of blastomeres isolated from the ectoderm of stage 6-10 Xenopus blastulae have been investigated. The increase in membrane potential between stages 6 and 9, reported previously in intact embryos, is not clearly apparent in isolated cells. However, marked differences were observed between early and late stages. 2. The membrane specific resistance was high at all stages (100-300 k omega cm2) and increased from stage 6 to stage 9. This specific resistance is much higher than previous estimates of the permeability of newly formed membrane after fertilization and very different from values reported for differentiated cells. 3. The membrane Na-K pump activity has been measured at all stages by applying ouabain to the cells (10(-4) to 10(-3) M). The pump rate per unit surface area, calculated as the ratio of the ouabain-sensitive part of the resting potential to the specific resistance, decreased from stage 7 (about 0.19 microA/microF) to stage 9 (about 0.04 microA/microF). 4. The ouabain-insensitive part of the resting potential increased from stage 6 to 9. At all stages, the blastomeres were permeable primarily to K+; blastomeres at stage 9 were more sensitive to change of external K+ than at stage 7, suggesting an increase in K+ selectivity. 5. The membrane potential was very sensitive to external pH at all stages. External protons appeared to block the permeability to K+. At low pH, it was possible to demonstrate some permeability of early blastomeres to Na+. 6. At variable times after impalement, cells underwent an increase in K+ permeability of 5- to 10-fold. This seems to be due to ion leak from the intracellular electrode. 7. This dual membrane state was observed at all stages and it may explain some of the earlier reports of high K+ permeability.
Full text
PDF



















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baud C., Barish M. E. Changes in membrane hydrogen and sodium conductances during progesterone-induced maturation of Ambystoma oocytes. Dev Biol. 1984 Oct;105(2):423–434. doi: 10.1016/0012-1606(84)90299-9. [DOI] [PubMed] [Google Scholar]
- Cross N. L., Elinson R. P. A fast block to polyspermy in frogs mediated by changes in the membrane potential. Dev Biol. 1980 Mar;75(1):187–198. doi: 10.1016/0012-1606(80)90154-2. [DOI] [PubMed] [Google Scholar]
- DiCaprio R. A., French A. S., Sanders E. J. On the mechanism of electrical coupling between cells of early Xenopus embryos. J Membr Biol. 1976 Jun 30;27(4):393–408. doi: 10.1007/BF01869148. [DOI] [PubMed] [Google Scholar]
- Gillespie J. I. The distribution of small ions during the early development of Xenopus laevis and Ambystoma mexicanum embryos. J Physiol. 1983 Nov;344:359–377. doi: 10.1113/jphysiol.1983.sp014945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grey R. D., Bastiani M. J., Webb D. J., Schertel E. R. An electrical block is required to prevent polyspermy in eggs fertilized by natural mating of Xenopus laevis. Dev Biol. 1982 Feb;89(2):475–484. doi: 10.1016/0012-1606(82)90335-9. [DOI] [PubMed] [Google Scholar]
- Grinstein S., Rothstein A., Sarkadi B., Gelfand E. W. Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol. 1984 Mar;246(3 Pt 1):C204–C215. doi: 10.1152/ajpcell.1984.246.3.C204. [DOI] [PubMed] [Google Scholar]
- Guthrie S. C. Patterns of junctional communication in the early amphibian embryo. Nature. 1984 Sep 13;311(5982):149–151. doi: 10.1038/311149a0. [DOI] [PubMed] [Google Scholar]
- Kline D., Robinson K. R., Nuccitelli R. Ion currents and membrane domains in the cleaving Xenopus egg. J Cell Biol. 1983 Dec;97(6):1753–1761. doi: 10.1083/jcb.97.6.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. C., Steinhardt R. A. Observations on intracellular pH during cleavage of eggs of Xenopus laevis. J Cell Biol. 1981 Nov;91(2 Pt 1):414–419. doi: 10.1083/jcb.91.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loewenstein W. R., Kanno Y., Socolar S. J. Quantum jumps of conductance during formation of membrane channels at cell-cell junction. Nature. 1978 Jul 13;274(5667):133–136. doi: 10.1038/274133a0. [DOI] [PubMed] [Google Scholar]
- Messenger E. A., Warner A. E. The function of the sodium pump during differentiation of amphibian embryonic neurones. J Physiol. 1979 Jul;292:85–105. doi: 10.1113/jphysiol.1979.sp012840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreau M., Guerrier P., Dorée M. Modifications précoces des propriétés électriques de la membrane plasmique des ovocytes de Xenopus laevis au cours de la réinitation méotique induite par la progestérone, le parachloromercuribenzoate (pCMB) ou l'ionophore A 23 187. C R Acad Sci Hebd Seances Acad Sci D. 1976 Mar 29;282(13):1309–1312. [PubMed] [Google Scholar]
- Newport J., Kirschner M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell. 1982 Oct;30(3):675–686. doi: 10.1016/0092-8674(82)90272-0. [DOI] [PubMed] [Google Scholar]
- Palmer J. F., Slack C. Some bio-electric parameters of early Xenopus embryos. J Embryol Exp Morphol. 1970 Nov;24(3):535–553. [PubMed] [Google Scholar]
- Schlichter L. C. A role for action potentials in maturing Rana pipiens oocytes. Dev Biol. 1983 Jul;98(1):60–69. doi: 10.1016/0012-1606(83)90335-4. [DOI] [PubMed] [Google Scholar]
- Schlichter L. C. Spontaneous action potentials produced by Na and Cl channels in maturing Rana pipiens oocytes. Dev Biol. 1983 Jul;98(1):47–59. doi: 10.1016/0012-1606(83)90334-2. [DOI] [PubMed] [Google Scholar]
- Slack C., Warner A. E. Intracellular and intercellular potentials in the early amphibian embryo. J Physiol. 1973 Jul;232(2):313–330. doi: 10.1113/jphysiol.1973.sp010272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slack C., Warner A. E. Properties of surface and junctional membranes of embryonic cells isolated from blastula stages of Xenopus laevis. J Physiol. 1975 Jun;248(1):97–120. doi: 10.1113/jphysiol.1975.sp010964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. C., Dale L., Slack J. M. Cell lineage labels and region-specific markers in the analysis of inductive interactions. J Embryol Exp Morphol. 1985 Nov;89 (Suppl):317–331. [PubMed] [Google Scholar]
- Spitzer N. C. Voltage- and stage-dependent uncoupling of Rohon-Beard neurones during embryonic development of Xenopus tadpoles. J Physiol. 1982 Sep;330:145–162. doi: 10.1113/jphysiol.1982.sp014334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spray D. C., Harris A. L., Bennett M. V. Equilibrium properties of a voltage-dependent junctional conductance. J Gen Physiol. 1981 Jan;77(1):77–93. doi: 10.1085/jgp.77.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turin L. Electrogenic sodium pumping in Xenopus blastomeres: apparent pump conductance and reversal potential. Soc Gen Physiol Ser. 1984;38:345–351. [PubMed] [Google Scholar]
- Turin L., Warner A. E. Intracellular pH in early Xenopus embryos: its effect on current flow between blastomeres. J Physiol. 1980 Mar;300:489–504. doi: 10.1113/jphysiol.1980.sp013174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace R. A., Steinhardt R. A. Maturation of Xenopus oocytes. II. Observations on membrane potential. Dev Biol. 1977 Jun;57(2):305–316. doi: 10.1016/0012-1606(77)90217-2. [DOI] [PubMed] [Google Scholar]
- Webb D. J., Nuccitelli R. A comparative study of the membrane potential from before fertilization through early cleavage in two frogs, Rana pipiens and Xenopus laevis. Comp Biochem Physiol A Comp Physiol. 1985;82(1):35–42. doi: 10.1016/0300-9629(85)90701-7. [DOI] [PubMed] [Google Scholar]
- Webb D. J., Nuccitelli R. Fertilization potential and electrical properties of the Xenopus laevis egg. Dev Biol. 1985 Feb;107(2):395–406. doi: 10.1016/0012-1606(85)90321-5. [DOI] [PubMed] [Google Scholar]
- Woodward D. J. Electrical signs of new membrane production during cleavage of Rana pipiens eggs. J Gen Physiol. 1968 Sep;52(3):509–531. doi: 10.1085/jgp.52.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Laat S. W., Buwalda R. J., Habets A. M. Intracellular ionic distribution, cell membrane permeability and membrane potential of the Xenopus egg during first cleavage. Exp Cell Res. 1974 Nov;89(1):1–14. doi: 10.1016/0014-4827(74)90180-3. [DOI] [PubMed] [Google Scholar]
- de Laat W. S., Bluemink J. G. New membrane formation during cytokinesis in normal and cytochalasin B-treated eggs of Xenopus laevis. II. Electrophysiological observations. J Cell Biol. 1974 Mar;60(3):529–540. doi: 10.1083/jcb.60.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]