Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Jun;387:31–46. doi: 10.1113/jphysiol.1987.sp016560

Renal mechanisms of human alpha-atrial natriuretic peptide in man.

J Brown 1, L Corr 1
PMCID: PMC1192491  PMID: 2958623

Abstract

1. Eight normal volunteers were studied on two separate days after being dehydrated overnight. Each volunteer received a background intravenous infusion of arginine vasopressin (5.5 X 10(-7) i.u. kg-1 min-1) on both days and also received an intravenous infusion of human alpha-atrial natriuretic peptide (15 pmol kg-1 min-1) plus carrier on one day and carrier alone on the other. The ensuing changes in blood pressure, in the excretion of urinary solutes, and in the excretion of solute-free water were recorded. 2. The infusion of atrial peptide had a small hypotensive effect, and increased the rate of excretion of sodium but not of potassium. There were no significant changes of urinary osmolality or of creatinine clearance. 3. The infusion of atrial peptide increased the rate of solute-free water reabsorption and did so in direct proportion to its effect of increasing sodium excretion. 4. A further six normal, dehydrated volunteers were studied on each of two days after taking 500 mg of lithium carbonate on the previous evening. On one day, they received an intravenous infusion of human alpha-atrial natriuretic peptide (15 pmol kg-1 min-1) plus carrier and on the other day they received carrier alone. The excretion of urinary electrolytes and the creatinine clearance were recorded. 5. The infusion of atrial peptide produced significant increases in the rates of excretion of both sodium and lithium, but there were no such changes of creatinine clearance. 6. Another six normal volunteers were studied on each of two days. On each day they drank 2 l of water over 30 min and then water to replace their urinary losses. They also received loading doses and maintenance infusions of inulin and sodium para-aminohippurate. Once a full water diuresis had become established, each subject received an infusion of human alpha-atrial natriuretic peptide (15 pmol kg-1 min-1) plus carrier on one day and carrier alone on the other, exactly as before. The excretion of sodium and solute-free water, and the clearances of inulin and para-amino-hippurate were recorded. 7. The infusion of atrial peptide increased the rates of excretion of both sodium and solute-free water. It also increased the clearance of inulin, but not that of para-aminohippurate. 8. These results suggest that, in our volunteers, infusion of human alpha-atrial natriuretic peptide increases sodium excretion mainly by increasing the delivery of sodium along the renal tubule from sites upstream of the loop of Henle.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
31

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. V., Struthers A. D., Payne N. N., Slater J. D., Bloom S. R. Atrial natriuretic peptide inhibits the aldosterone response to angiotensin II in man. Clin Sci (Lond) 1986 May;70(5):507–512. doi: 10.1042/cs0700507. [DOI] [PubMed] [Google Scholar]
  2. BOJESEN E. The transport of urine in the upper urinary tract. Acta Physiol Scand. 1954 Oct 20;32(1):39–62. doi: 10.1111/j.1748-1716.1954.tb01154.x. [DOI] [PubMed] [Google Scholar]
  3. BOYARSKY S., SMITH H. W. Renal concentrating operation at low urine flows. J Urol. 1957 Nov;78(5):511–524. doi: 10.1016/S0022-5347(17)66472-3. [DOI] [PubMed] [Google Scholar]
  4. Balfour W. E. Blood volume regulation. On the right lines at last? Nature. 1985 Mar 21;314(6008):226–227. doi: 10.1038/314226a0. [DOI] [PubMed] [Google Scholar]
  5. Baum M., Toto R. D. Lack of a direct effect of atrial natriuretic factor in the rabbit proximal tubule. Am J Physiol. 1986 Jan;250(1 Pt 2):F66–F69. doi: 10.1152/ajprenal.1986.250.1.F66. [DOI] [PubMed] [Google Scholar]
  6. Bianchi C., Gutkowska J., Thibault G., Garcia R., Genest J., Cantin M. Radioautographic localization of 125I-atrial natriuretic factor (ANF) in rat tissues. Histochemistry. 1985;82(5):441–452. doi: 10.1007/BF02450479. [DOI] [PubMed] [Google Scholar]
  7. Briggs J. P., Steipe B., Schubert G., Schnermann J. Micropuncture studies of the renal effects of atrial natriuretic substance. Pflugers Arch. 1982 Dec;395(4):271–276. doi: 10.1007/BF00580789. [DOI] [PubMed] [Google Scholar]
  8. Dillingham M. A., Anderson R. J. Inhibition of vasopressin action by atrial natriuretic factor. Science. 1986 Mar 28;231(4745):1572–1573. doi: 10.1126/science.3006248. [DOI] [PubMed] [Google Scholar]
  9. GOLDBERG M., MCCURDY D. K., RAMIREZ M. A. DIFFERENCES BETWEEN SALINE AND MANNITOL DIURESIS IN HYDROPENIC MAN. J Clin Invest. 1965 Feb;44:182–192. doi: 10.1172/JCI105133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hammond T. G., Yusufi A. N., Knox F. G., Dousa T. P. Administration of atrial natriuretic factor inhibits sodium-coupled transport in proximal tubules. J Clin Invest. 1985 Jun;75(6):1983–1989. doi: 10.1172/JCI111916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hansell P., Ulfendahl H. R. Atriopeptins and renal cortical and papillary blood flow. Acta Physiol Scand. 1986 Jul;127(3):349–357. doi: 10.1111/j.1748-1716.1986.tb07915.x. [DOI] [PubMed] [Google Scholar]
  12. Hayslett J. P., Kashgarian M. A micropuncture study of the renal handling of lithium. Pflugers Arch. 1979 Jun 12;380(2):159–163. doi: 10.1007/BF00582152. [DOI] [PubMed] [Google Scholar]
  13. Huang C. L., Lewicki J., Johnson L. K., Cogan M. G. Renal mechanism of action of rat atrial natriuretic factor. J Clin Invest. 1985 Feb;75(2):769–773. doi: 10.1172/JCI111759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koseki C., Hayashi Y., Torikai S., Furuya M., Ohnuma N., Imai M. Localization of binding sites for alpha-rat atrial natriuretic polypeptide in rat kidney. Am J Physiol. 1986 Feb;250(2 Pt 2):F210–F216. doi: 10.1152/ajprenal.1986.250.2.F210. [DOI] [PubMed] [Google Scholar]
  15. Kuribayashi T., Nakazato M., Tanaka M., Nagamine M., Kurihara T., Kangawa K., Matsuo H. Renal effects of human alpha-atrial natriuretic polypeptide. N Engl J Med. 1985 May 30;312(22):1456–1457. doi: 10.1056/NEJM198505303122213. [DOI] [PubMed] [Google Scholar]
  16. Lang R. E., Thölken H., Ganten D., Luft F. C., Ruskoaho H., Unger T. Atrial natriuretic factor--a circulating hormone stimulated by volume loading. Nature. 1985 Mar 21;314(6008):264–266. doi: 10.1038/314264a0. [DOI] [PubMed] [Google Scholar]
  17. Maack T., Camargo M. J., Kleinert H. D., Laragh J. H., Atlas S. A. Atrial natriuretic factor: structure and functional properties. Kidney Int. 1985 Apr;27(4):607–615. doi: 10.1038/ki.1985.54. [DOI] [PubMed] [Google Scholar]
  18. ORLOFF J., WAGNER H. N., Jr, DAVIDSON D. G. The effect of variations in solute excretion and vasopressin dosage on the excretion of water in the dog. J Clin Invest. 1958 Mar;37(3):458–464. doi: 10.1172/JCI103625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SCHREINER G. E. Determination of inulin by means of resorcinol. Proc Soc Exp Biol Med. 1950 May;74(1):117–120. doi: 10.3181/00379727-74-17827. [DOI] [PubMed] [Google Scholar]
  20. Sagnella G. A., Markandu N. D., Shore A. C., MacGregor G. A. Effects of changes in dietary sodium intake and saline infusion on immunoreactive atrial natriuretic peptide in human plasma. Lancet. 1985 Nov 30;2(8466):1208–1211. doi: 10.1016/s0140-6736(85)90741-x. [DOI] [PubMed] [Google Scholar]
  21. Samson W. K. Atrial natriuretic factor inhibits dehydration and hemorrhage-induced vasopressin release. Neuroendocrinology. 1985 Mar;40(3):277–279. doi: 10.1159/000124085. [DOI] [PubMed] [Google Scholar]
  22. Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sonnenberg H., Honrath U., Chong C. K., Wilson D. R. Atrial natriuretic factor inhibits sodium transport in medullary collecting duct. Am J Physiol. 1986 Jun;250(6 Pt 2):F963–F966. doi: 10.1152/ajprenal.1986.250.6.F963. [DOI] [PubMed] [Google Scholar]
  24. Thomsen K., Holstein-Rathlou N. H., Leyssac P. P. Comparison of three measures of proximal tubular reabsorption: lithium clearance, occlusion time, and micropuncture. Am J Physiol. 1981 Oct;241(4):F348–F355. doi: 10.1152/ajprenal.1981.241.4.F348. [DOI] [PubMed] [Google Scholar]
  25. Thomsen K. Lithium clearance: a new method for determining proximal and distal tubular reabsorption of sodium and water. Nephron. 1984;37(4):217–223. doi: 10.1159/000183252. [DOI] [PubMed] [Google Scholar]
  26. Thomsen K. The renal handling of lithium: relation between lithium clearance, sodium clearance and urine flow in rats with diabetes insipidus. Acta Pharmacol Toxicol (Copenh) 1977 Apr;40(4):491–496. [PubMed] [Google Scholar]
  27. Weidmann P., Hasler L., Gnädinger M. P., Lang R. E., Uehlinger D. E., Shaw S., Rascher W., Reubi F. C. Blood levels and renal effects of atrial natriuretic peptide in normal man. J Clin Invest. 1986 Mar;77(3):734–742. doi: 10.1172/JCI112368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yamaji T., Ishibashi M., Takaku F. Atrial natriuretic factor in human blood. J Clin Invest. 1985 Oct;76(4):1705–1709. doi: 10.1172/JCI112159. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES