Abstract
1. Intact skeletal muscle fibres have been shown to contain a high concentration of [3H]ouabain binding sites (100-800 pmol g wet wt.-1). Under resting conditions, however, it seems that in isolated muscles only 2-6% of the corresponding expected capacity for active Na+-K+ transport is utilized. 2. In order to determine whether all [3H]ouabain binding sites in rat soleus muscle represent functional Na+-K+ pumps, we have measured the maximum rates of the ouabain-suppressible components of isotopic fluxes of Na+ and K+ as well as the net changes in Na+-K+ contents. 3. Experiments with soleus muscles isolated from 4-week-old rats showed that following Na+ loading (I.C. Na+, 126 mmol l-1), the ouabain-suppressible 86Rb+ uptake and 22Na+ efflux as measured during 3 min of exposure to K+-rich buffer were 5800 and 6500 nmol g wet wt.-1 min-1, respectively. 4. These initial high rates of isotopic fluxes were confirmed by flame photometric measurements of Na+-K+ contents. The ouabain-suppressible 86Rb+ uptake had a temperature coefficient of 2.1, was inhibited by 2,4-dinitrophenol, but showed no response to tetracaine, BaCl2, Ca2+-free buffer or tetraethylammonium chloride. 5. In soleus muscles, where the total population of [3H]ouabain binding sites had undergone changes as a result of differentiation, K+ depletion or pre-treatment with thyroid hormone, there was a significant correlation (r = 0.95, P less than 0.005) between the concentration of [3H]ouabain binding sites (260-1170 pmol g wet wt.-1) and the maximum ouabain-suppressible 86Rb+ uptake (2300-10,900 nmol g wet wt.-1 min-1). 6. It is concluded that by the combination of Na+ loading and high extracellular K+, the available Na+-K+ pumps as quantified by the [3H]ouabain binding capacity can be activated to reach a transport rate around 90% of the theoretical maximum at 30 degrees C.
Full text
PDF


















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H., Slayman C. L. Membrane potential and conductance during transport of sodium, potassium and rubidium in frog muscle. J Physiol. 1966 Jun;184(4):970–1014. doi: 10.1113/jphysiol.1966.sp007961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clausen T., Dahl-Hansen A. B., Elbrink J. The effect of hyperosmolarity and insulin on resting tension and calcium fluxes in rat soleus muscle. J Physiol. 1979 Jul;292:505–526. doi: 10.1113/jphysiol.1979.sp012868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clausen T., Flatman J. A. The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle. J Physiol. 1977 Sep;270(2):383–414. doi: 10.1113/jphysiol.1977.sp011958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clausen T., Hansen O., Kjeldsen K., Nørgaard A. Effect of age, potassium depletion and denervation on specific displaceable [3H]ouabain binding in rat skeletal muscle in vivo. J Physiol. 1982 Dec;333:367–381. doi: 10.1113/jphysiol.1982.sp014458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clausen T., Kohn P. G. The effect of insulin on the transport of sodium and potassium in rat soleus muscle. J Physiol. 1977 Feb;265(1):19–42. doi: 10.1113/jphysiol.1977.sp011703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clausen T. Regulation of active Na+-K+ transport in skeletal muscle. Physiol Rev. 1986 Jul;66(3):542–580. doi: 10.1152/physrev.1986.66.3.542. [DOI] [PubMed] [Google Scholar]
- Crettaz M., Prentki M., Zaninetti D., Jeanrenaud B. Insulin resistance in soleus muscle from obese Zucker rats. Involvement of several defective sites. Biochem J. 1980 Feb 15;186(2):525–534. doi: 10.1042/bj1860525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahl-Hansen A. B., Clausen T. The effect of membrane stabilizers and ouabain on the transport of Na+ and K+ in rat soleus muscle. Biochim Biophys Acta. 1973 Aug 9;318(1):147–153. doi: 10.1016/0005-2736(73)90344-1. [DOI] [PubMed] [Google Scholar]
- Erlij D., Grinstein S. Stimulation of the sodium pump by azide and high internal sodium: changes in the number of pumping sites and turnover rate. J Physiol. 1976 Jul;259(1):33–45. doi: 10.1113/jphysiol.1976.sp011453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kjeldsen K., Everts M. E., Clausen T. The effects of thyroid hormones on 3H-ouabain binding site concentration, Na,K-contents and 86Rb-efflux in rat skeletal muscle. Pflugers Arch. 1986 May;406(5):529–535. doi: 10.1007/BF00583377. [DOI] [PubMed] [Google Scholar]
- Kjeldsen K., Nøgaard A., Clausen T. The age-dependent changes in the number of 3H-ouabain binding sites in mammalian skeletal muscle. Pflugers Arch. 1984 Sep;402(1):100–108. doi: 10.1007/BF00584838. [DOI] [PubMed] [Google Scholar]
- Kjeldsen K., Nørgaard A., Clausen T. Effect of K-depletion on 3H-ouabain binding and Na-K-contents in mammalian skeletal muscle. Acta Physiol Scand. 1984 Oct;122(2):103–117. doi: 10.1111/j.1748-1716.1984.tb07488.x. [DOI] [PubMed] [Google Scholar]
- Kjeldsen K., Nørgaard A., Clausen T. Effects of ouabain, age and K-depletion on K-uptake in rat soleus muscle. Pflugers Arch. 1985 Aug;404(4):365–373. doi: 10.1007/BF00585350. [DOI] [PubMed] [Google Scholar]
- Kohn P. G., Clausen T. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. VI. The effect of insulin, ouabain, and metabolic inhibitors on the transport of 3-O-methylglucose and glucose in rat soleus muscles. Biochim Biophys Acta. 1971 Feb 2;225(2):277–290. doi: 10.1016/0005-2736(71)90221-5. [DOI] [PubMed] [Google Scholar]
- Manery J. F., Dryden E. E., Still J. S., Madapallimattam G. Enhancement (by ATP, insulin, and lack of divalent cations) of ouabain inhibition of cation transport and ouabain binding in frog skeletal muscle; effect of insulin and ouabain on sarcolemmal (Na + K)MgATPase. Can J Physiol Pharmacol. 1977 Feb;55(1):21–33. doi: 10.1139/y77-004. [DOI] [PubMed] [Google Scholar]
- Nørgaard A., Kjeldsen K., Clausen T. A method for the determination of the total number of 3H-ouabain binding sites in biopsies of human skeletal muscle. Scand J Clin Lab Invest. 1984 Oct;44(6):509–518. doi: 10.3109/00365518409083604. [DOI] [PubMed] [Google Scholar]
- Nørgaard A., Kjeldsen K., Hansen O. (Na+ + K+)-ATPase activity of crude homogenates of rat skeletal muscle as estimated from their K+-dependent 3-O-methylfluorescein phosphatase activity. Biochim Biophys Acta. 1984 Mar 14;770(2):203–209. doi: 10.1016/0005-2736(84)90131-7. [DOI] [PubMed] [Google Scholar]
- Nørgaard A., Kjeldsen K., Hansen O., Clausen T. A simple and rapid method for the determination of the number of 3H-ouabain binding sites in biopsies of skeletal muscle. Biochem Biophys Res Commun. 1983 Feb 28;111(1):319–325. doi: 10.1016/s0006-291x(83)80154-5. [DOI] [PubMed] [Google Scholar]
- Plesner I. W., Plesner L. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. Biochim Biophys Acta. 1981 Nov 6;648(2):231–246. doi: 10.1016/0005-2736(81)90039-0. [DOI] [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- Sjøgaard G., Adams R. P., Saltin B. Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol. 1985 Feb;248(2 Pt 2):R190–R196. doi: 10.1152/ajpregu.1985.248.2.R190. [DOI] [PubMed] [Google Scholar]
- Stanfield P. R. The differential effects of tetraethylammonium and zinc ions on the resting conductance of frog skeletal muscle. J Physiol. 1970 Jul;209(1):231–256. doi: 10.1113/jphysiol.1970.sp009164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Hardeveld C., Clausen T. Effect of thyroid status on K+-stimulated metabolism and 45Ca exchange in rat skeletal muscle. Am J Physiol. 1984 Oct;247(4 Pt 1):E421–E430. doi: 10.1152/ajpendo.1984.247.4.E421. [DOI] [PubMed] [Google Scholar]
- Venosa R. A., Horowicz P. Density and apparent location of the sodium pump in frog sartorius muscle. J Membr Biol. 1981 Apr 30;59(3):225–232. doi: 10.1007/BF01875427. [DOI] [PubMed] [Google Scholar]