Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Jul;388:199–212. doi: 10.1113/jphysiol.1987.sp016610

Contributions of inhibitory mechanisms to the shift responses of X and Y cells in the cat lateral geniculate nucleus.

U T Eysel 1, H C Pape 1, R Van Schayck 1
PMCID: PMC1192544  PMID: 2888883

Abstract

1. Adult cats were anaesthetized with a mixture of halothane, nitrous oxide and oxygen to record from single neurones of the dorsal lateral geniculate nucleus (d.l.g.n.) with five-barrel glass micro-electrodes. Periphery effects (shift effects) were elicited by large-field phase-reversing gratings presented in the visual field outside the conventional receptive field area. 2. A range of transient excitatory responses was found in X and Y cells. Y cells had phasic shift effects with significantly higher amplitudes and shorter durations (mean 52 impulses/s, 135 ms) than those observed in the tonic shift effects of X cells (mean 24 impulses/s, 169 ms). All Y cells and most X cells responded to stimulation of remote retinal regions. About 7% of the X cells displayed no shift effect. 3. Micro-ionophoresis of the gamma-aminobutyric acid (GABA) antagonist bicuculline, acetylcholine (ACh) and L-glutamate specifically influenced the shift effects of X and Y cells. 4. During continuous application of the GABA antagonist bicuculline the differences in maximal response rates and amplitudes of X and Y cells were eliminated. The maintained activity raised predominantly in X cells and the early peak rates increased more in X- than in Y-cell shift effects, leading to equal average peak rates of 100 and response amplitudes of about 85 impulses/s in both cell classes. The characteristic time courses of X- and Y-cell responses were not affected. 5. Micro-ionophoretic application of ACh caused a combination of excitatory and disinhibitory effects. Maintained activity as well as early parts of stimulus-evoked responses were similarly raised in X and Y cells. In addition, the Y-cell shift effects became less phasic by elevation of the late response part. Sodium pentobarbitone, used to block ACh excitation, suppressed the ACh-induced effects in the early phase of the X- and Y-cell shift effects and the increase of maintained activity in Y-cells, while the effect on the late part of Y-cell responses persisted. Elevation of background activity partially remained in X cells, and the X-cell responses became tonically prolonged at the same time. 6. L-Glutamate increased the activity of X and Y cells without changing the characteristic shift-effect properties of both cell classes. 7. It is concluded that different short- and long-lasting inhibitory mechanisms shape the responses of d.l.g.n. neurones to stimulation outside the conventional receptive field.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
199

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlsén G., Lindström S., Lo F. S. Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat. Exp Brain Res. 1985;58(1):134–143. doi: 10.1007/BF00238961. [DOI] [PubMed] [Google Scholar]
  2. Barlow H. B., Derrington A. M., Harris L. R., Lennie P. The effects of remote retinal stimulation on the responses of cat retinal ganglion cells. J Physiol. 1977 Jul;269(1):177–194. doi: 10.1113/jphysiol.1977.sp011898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berardi N., Morrone M. C. The role of gamma-aminobutyric acid mediated inhibition in the response properties of cat lateral geniculate nucleus neurones. J Physiol. 1984 Dec;357:505–523. doi: 10.1113/jphysiol.1984.sp015514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cleland B. G., Levick W. R., Sanderson K. J. Properties of sustained and transient ganglion cells in the cat retina. J Physiol. 1973 Feb;228(3):649–680. doi: 10.1113/jphysiol.1973.sp010105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Derrington A. M., Fuchs A. F. Spatial and temporal properties of X and Y cells in the cat lateral geniculate nucleus. J Physiol. 1979 Aug;293:347–364. doi: 10.1113/jphysiol.1979.sp012893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Derrington A. M., Lennie P., Wright M. J. The mechanism of peripherally evoked responses in retinal ganglion cells. J Physiol. 1979 Apr;289:299–310. doi: 10.1113/jphysiol.1979.sp012738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubin M. W., Cleland B. G. Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. J Neurophysiol. 1977 Mar;40(2):410–427. doi: 10.1152/jn.1977.40.2.410. [DOI] [PubMed] [Google Scholar]
  9. Eysel U. T., Pape H. C., Van Schayck R. Excitatory and differential disinhibitory actions of acetylcholine in the lateral geniculate nucleus of the cat. J Physiol. 1986 Jan;370:233–254. doi: 10.1113/jphysiol.1986.sp015932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eysel U. T., Ringeler U. Inhibitory periphery effect in geniculate neurons after elimination of specific retinogeniculate excitation. Neurosci Lett. 1985 Jun 12;57(2):119–124. doi: 10.1016/0304-3940(85)90049-7. [DOI] [PubMed] [Google Scholar]
  11. Fischer B., Barth R., Sternheim C. E. Interaction of receptive field responses and shift-effect in cat retinal and geniculate neurons. Exp Brain Res. 1978 Feb 15;31(2):235–248. doi: 10.1007/BF00237602. [DOI] [PubMed] [Google Scholar]
  12. Fischer B., Krüger J., Droll W. Quantitative aspects of the shift-effect in cat retinal ganglion cells. Brain Res. 1975 Jan 17;83(3):391–403. doi: 10.1016/0006-8993(75)90832-x. [DOI] [PubMed] [Google Scholar]
  13. Fischer B., Krüger J. The shift-effect in the cat's lateral geniculate neurons. Exp Brain Res. 1974;21(2):225–227. doi: 10.1007/BF00234391. [DOI] [PubMed] [Google Scholar]
  14. Fitzpatrick D., Penny G. R., Schmechel D. E. Glutamic acid decarboxylase-immunoreactive neurons and terminals in the lateral geniculate nucleus of the cat. J Neurosci. 1984 Jul;4(7):1809–1829. doi: 10.1523/JNEUROSCI.04-07-01809.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HUBEL D. H., WIESEL T. N. Integrative action in the cat's lateral geniculate body. J Physiol. 1961 Feb;155:385–398. doi: 10.1113/jphysiol.1961.sp006635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hamasaki D. I., Hanada I. A comparison of the shift response of X- and Y-cells in the cat's retina. Exp Brain Res. 1983;50(1):117–124. doi: 10.1007/BF00238238. [DOI] [PubMed] [Google Scholar]
  17. Hamasaki D. I., Maguire G. W. A neural pathway for the shift response in the cat. Brain Res. 1985 Jun 24;337(1):51–58. doi: 10.1016/0006-8993(85)91608-7. [DOI] [PubMed] [Google Scholar]
  18. Hammond P. Contrasts in spatial organization of receptive fields at geniculate and retinal levels: centre, surround and outer surround. J Physiol. 1973 Jan;228(1):115–137. doi: 10.1113/jphysiol.1973.sp010076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hoffmann K. P., Stone J., Sherman S. M. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1972 Jul;35(4):518–531. doi: 10.1152/jn.1972.35.4.518. [DOI] [PubMed] [Google Scholar]
  20. Kemp J. A., Sillito A. M. The nature of the excitatory transmitter mediating X and Y cell inputs to the cat dorsal lateral geniculate nucleus. J Physiol. 1982 Feb;323:377–391. doi: 10.1113/jphysiol.1982.sp014078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MCILWAIN J. T. RECEPTIVE FIELDS OF OPTIC TRACT AXONS AND LATERAL GENICULATE CELLS: PERIPHERAL EXTENT AND BARBITURATE SENSITIVITY. J Neurophysiol. 1964 Nov;27:1154–1173. doi: 10.1152/jn.1964.27.6.1154. [DOI] [PubMed] [Google Scholar]
  22. Montero V. M., Singer W. Ultrastructural identification of somata and neural processes immunoreactive to antibodies against glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the cat. Exp Brain Res. 1985;59(1):151–165. doi: 10.1007/BF00237675. [DOI] [PubMed] [Google Scholar]
  23. Montero V. M., Singer W. Ultrastructure and synaptic relations of neural elements containing glutamic acid decarboxylase (GAD) in the perigeniculate nucleus of the cat. A light and electron microscopic immunocytochemical study. Exp Brain Res. 1984;56(1):115–125. doi: 10.1007/BF00237447. [DOI] [PubMed] [Google Scholar]
  24. Pape H. C., Eysel U. T. Binocular interactions in the lateral geniculate nucleus of the cat: GABAergic inhibition reduced by dominant afferent activity. Exp Brain Res. 1986;61(2):265–271. doi: 10.1007/BF00239516. [DOI] [PubMed] [Google Scholar]
  25. Phillis J. W., Tebecis A. K., York D. H. A study of cholinoceptive cells in the lateral geniculate nucleus. J Physiol. 1967 Oct;192(3):695–713. doi: 10.1113/jphysiol.1967.sp008326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sanderson K. J., Darian-Smith I., Bishop P. O. Binocular corresponding receptive fields of single units in the cat dorsal lateral geniculate nucleus. Vision Res. 1969 Oct;9(10):1297–1303. doi: 10.1016/0042-6989(69)90117-5. [DOI] [PubMed] [Google Scholar]
  27. Sillito A. M., Kemp J. A., Berardi N. The cholinergic influence on the function of the cat dorsal lateral geniculate nucleus (dLGN). Brain Res. 1983 Dec 5;280(2):299–307. doi: 10.1016/0006-8993(83)90059-8. [DOI] [PubMed] [Google Scholar]
  28. Sillito A. M., Kemp J. A. The influence of GABAergic inhibitory processes on the receptive field structure of X and Y cells in cat dorsal lateral geniculate nucleus (dLGN). Brain Res. 1983 Oct 24;277(1):63–77. doi: 10.1016/0006-8993(83)90908-3. [DOI] [PubMed] [Google Scholar]
  29. Singer W., Bedworth N. Inhibitory interaction between X and Y units in the cat lateral geniculate nucleus. Brain Res. 1973 Jan 30;49(2):291–307. doi: 10.1016/0006-8993(73)90424-1. [DOI] [PubMed] [Google Scholar]
  30. Singer W., Creutzfeldt O. D. Reciprocal lateral inhibition of on- and off-center neurones in the lateral geniculate body of the cat. Exp Brain Res. 1970;10(3):311–330. doi: 10.1007/BF00235054. [DOI] [PubMed] [Google Scholar]
  31. Singer W. Inhibitory binocular interaction in the lateral geniculate body of the cat. Brain Res. 1970 Feb 17;18(1):165–170. doi: 10.1016/0006-8993(70)90463-4. [DOI] [PubMed] [Google Scholar]
  32. Singer W., Pöppel E., Creutzfeldt O. Inhibitory interaction in the cat's lateral geniculate nucleus. Exp Brain Res. 1972;14(2):210–226. doi: 10.1007/BF00234800. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES