Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 Jul;388:547–563. doi: 10.1113/jphysiol.1987.sp016631

Micro-electrode studies on the effects of exogenous cyclic adenosine monophosphate on active sodium transport in frog skin.

W J Els 1, A F Mahlangu 1
PMCID: PMC1192565  PMID: 2821244

Abstract

1. The electrical parameters of the sodium-transporting cells in frog skin of Rana angolensis were determined under control conditions by using the micro-electrode technique. The data were analysed in terms of an electrical model (Helman, 1979). 2. The control intracellular voltages averaged -84.7 mV while the electromotive force of the inner barrier, E'1, averaged 103.9 mV. The major portion (82%) of the transcellular resistance was situated at the outer, apical, barrier. 3. Exogenous cyclic AMP stimulated active sodium transport and the short-circuit current (Isc) increased by an average 88%. The change in Isc was mediated primarily by decreasing the resistance of the apical barrier (Ro) with little effect on the electromotive force or resistance (Ri) of the inner membranes. 4. Isoprenaline increased the Isc by an average of 165%. The major effect of isoprenaline was to decrease the apical resistance by an average 77%. 5. Forskolin (2.5 microM) stimulated the Isc by an average of 138%. Amiloride would not completely reduce the Isc, but with the low concentration of 0.2 microM-forskolin, the Isc was typically inhibited to values close to zero. The major effect of forskolin was also to reduce the resistance of the apical barrier, although it concurrently also caused the E'1 to decrease by about 13%. 6. Theophylline increased the Isc by reducing the resistance of the apical barrier by an average 61%, with little or no effect on the other parameters. Theophylline augmented the effect of cyclic AMP. 8. Our results are consistent with the theory that cyclic AMP is a second messenger in hormonal control of active sodium transport in frog skin.

Full text

PDF
547

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceves J. Sodium pump stimulation by oxytocin and cyclic AMP in the isolated epithelium of the frog skin. Pflugers Arch. 1977 Nov 23;371(3):211–216. doi: 10.1007/BF00586260. [DOI] [PubMed] [Google Scholar]
  2. Baba W. I., Smith A. J., Townshend M. M. The effects of vasopressin, theophylline and cyclic 3'-5'-adenosine monophosphate (cyclic AMP) on sodium transport across the frog skin. Q J Exp Physiol Cogn Med Sci. 1967 Oct;52(4):416–421. doi: 10.1113/expphysiol.1967.sp001936. [DOI] [PubMed] [Google Scholar]
  3. Cuthbert A. W., Spayne J. A. Stimulation of sodium and of chloride transport in epithelia by forskolin. Br J Pharmacol. 1982 May;76(1):33–35. doi: 10.1111/j.1476-5381.1982.tb09187.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Sousa R. C., Grosso A. Forskolin mimics the hydrosmotic action of vasopressin in the urinary bladder of toads Bufo marinus. J Physiol. 1985 Aug;365:307–318. doi: 10.1113/jphysiol.1985.sp015774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Els W. J., Helman S. I. Vasopressin, theophylline, PGE2, and indomethacin on active Na transport in frog skin: studies with microelectrodes. Am J Physiol. 1981 Sep;241(3):F279–F288. doi: 10.1152/ajprenal.1981.241.3.F279. [DOI] [PubMed] [Google Scholar]
  6. Hall W. J., O'Donoghue J. P., O'Regan M. G., Penny W. J. Endogenous prostaglandins, adenosine 3':5'-monophosphate and sodium transport across isolated frog skin. J Physiol. 1976 Jul;258(3):731–753. doi: 10.1113/jphysiol.1976.sp011443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heisler S., Reisine T. Forskolin stimulates adenylate cyclase activity, cyclic AMP accumulation, and adrenocorticotropin secretion from mouse anterior pituitary tumor cells. J Neurochem. 1984 Jun;42(6):1659–1666. doi: 10.1111/j.1471-4159.1984.tb12757.x. [DOI] [PubMed] [Google Scholar]
  8. Helman S. I., Cox T. C., Van Driessche W. Hormonal control of apical membrane Na transport in epithelia. Studies with fluctuation analysis. J Gen Physiol. 1983 Aug;82(2):201–220. doi: 10.1085/jgp.82.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Helman S. I. Electrochemical potentials in frog skin: inferences for electrical and mechanistic models. Fed Proc. 1979 Dec;38(13):2743–2750. [PubMed] [Google Scholar]
  10. Helman S. I., Els W. J., Cox T. C., Van Driessche W. Hormonal control of the Na entry process at the apical membrane of frog skin. Prog Clin Biol Res. 1981;73:47–56. [PubMed] [Google Scholar]
  11. Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol. 1977 May;69(5):571–604. doi: 10.1085/jgp.69.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helman S. I., Nagel W., Fisher R. S. Ouabain on active transepithelial sodium transport in frog skin: studies with microelectrodes. J Gen Physiol. 1979 Jul;74(1):105–127. doi: 10.1085/jgp.74.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagel W. Effects of antidiuretic hormone upon electrical potential and resistance of apical and basolateral membranes of frog skin. J Membr Biol. 1978 Sep 18;42(2):99–122. doi: 10.1007/BF01885366. [DOI] [PubMed] [Google Scholar]
  14. Orloff J., Handler J. The role of adenosine 3',5'-phosphate in the action of antidiuretic hormone. Am J Med. 1967 May;42(5):757–768. doi: 10.1016/0002-9343(67)90093-9. [DOI] [PubMed] [Google Scholar]
  15. Rajerison R. M., Montegut M., Jard S., Morel F. The isolated frog skin epithelium: permeability characteristics and responsiveness to oxytocin, cyclic AMP and theophylline. Pflugers Arch. 1972;332(4):302–312. doi: 10.1007/BF00588577. [DOI] [PubMed] [Google Scholar]
  16. Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
  17. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Strewler G. J., Orloff J. Role of cyclic nucleotides in the transport of water and electrolytes. Adv Cyclic Nucleotide Res. 1977;8:311–361. [PubMed] [Google Scholar]
  19. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES