Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Nov;368:197–212. doi: 10.1113/jphysiol.1985.sp015853

Brain vascular volume, electrolytes and blood-brain interface in the cuttlefish Sepia officinalis (Cephalopoda).

N J Abbott, M Bundgaard, H F Cserr
PMCID: PMC1192592  PMID: 2416911

Abstract

Cephalopod molluscs have complex brains and behaviour, yet little is known about the permeability of their blood-brain interface. This paper presents studies on the brain fluid and electrolyte compartments of the cuttlefish Sepia, as a preliminary to characterization of the permeability of the blood-brain interface in this group. Sepia is shown to be a satisfactory experimental animal, and techniques are described for anaesthesia, cannulation, and tissue and fluid analysis. Our ionic analyses of body fluids are in general agreement with those of earlier workers. Analysis of brain tissue suggests that the extracellular space is 17-20 ml 100 g tissue-1 (i.e. 17-20%). Two large molecular weight tracers, 125I-human serum albumin (HSA) and Blue dextran, give consistent values for the brain vascular volume of 3.5-5.5%, slightly higher than in vertebrates. The HSA results further confirm that the Sepia blood-brain interface is relatively tight to proteins. Finally, we have shown that the fluid surrounding the brain, pericerebral fluid (PCF), is in relatively free communication with plasma.

Full text

PDF
197

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott J. Absence of blood-brain barrier in a crustacean, Carcinus maenas L. Nature. 1970 Jan 17;225(5229):291–293. doi: 10.1038/225291b0. [DOI] [PubMed] [Google Scholar]
  2. Abbott N. J., Bundgaard M., Cserr H. F. Tightness of the blood-brain barrier and evidence for brain interstitial fluid flow in the cuttlefish, Sepia officinalis. J Physiol. 1985 Nov;368:213–226. doi: 10.1113/jphysiol.1985.sp015854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abbott N. J. The organization of the cerebral ganglion in the shore crab, Carcinus maenas. I. Morphology. Z Zellforsch Mikrosk Anat. 1971;120(3):386–400. doi: 10.1007/BF00324899. [DOI] [PubMed] [Google Scholar]
  4. Barber V. C., Graziadei P. The fine sturcture of cephalopod blood vessels. II. The vessels of the nervous system. Z Zellforsch Mikrosk Anat. 1967;77(2):147–161. doi: 10.1007/BF00340785. [DOI] [PubMed] [Google Scholar]
  5. Bradbury M. W., Villamil M., Kleeman C. R. Extracellular fluid, ionic distribution and exchange in isolated frog brain. Am J Physiol. 1968 Mar;214(3):643–651. doi: 10.1152/ajplegacy.1968.214.3.643. [DOI] [PubMed] [Google Scholar]
  6. Brady J. The relationship between blood ions and blood-cell density in insects. J Exp Biol. 1967 Oct;47(2):313–326. doi: 10.1242/jeb.47.2.313. [DOI] [PubMed] [Google Scholar]
  7. Brightman M. W., Reese T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969 Mar;40(3):648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bundgaard M. Brain barrier systems in the lamprey. I. Ultrastructure and permeability of cerebral blood vessels. Brain Res. 1982 May 20;240(1):55–64. doi: 10.1016/0006-8993(82)90643-6. [DOI] [PubMed] [Google Scholar]
  9. Bundgaard M., Cserr H. A glial blood-brain barrier in elasmobranchs. Brain Res. 1981 Dec 7;226(1-2):61–73. doi: 10.1016/0006-8993(81)91083-0. [DOI] [PubMed] [Google Scholar]
  10. Cserr H. F., Cooper D. N., Suri P. K., Patlak C. S. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol. 1981 Apr;240(4):F319–F328. doi: 10.1152/ajprenal.1981.240.4.F319. [DOI] [PubMed] [Google Scholar]
  11. Davson H. Review lecture. The blood-brain barrier. J Physiol. 1976 Feb;255(1):1–28. doi: 10.1113/jphysiol.1976.sp011267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HAGIWARA S., TASAKI I. A study on the mechanism of impulse transmission across the giant synapse of the squid. J Physiol. 1958 Aug 29;143(1):114–137. doi: 10.1113/jphysiol.1958.sp006048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hodgkin A. L., Huxley A. F. Resting and action potentials in single nerve fibres. J Physiol. 1945 Oct 15;104(2):176–195. doi: 10.1113/jphysiol.1945.sp004114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lane N. J., Harrison J. B., Bowerman R. F. A vertebrate-like blood--brain barrier, with intraganglionic blood channels and occluding junctions, in the scorpion. Tissue Cell. 1981;13(3):557–576. doi: 10.1016/0040-8166(81)90027-6. [DOI] [PubMed] [Google Scholar]
  16. Potts W. T., Todd M. Kidney function in the octopus. Comp Biochem Physiol. 1965 Dec;16(4):479–489. doi: 10.1016/0010-406x(65)90311-7. [DOI] [PubMed] [Google Scholar]
  17. Stalker A. L. The microcirculatory effects of dextran. J Pathol Bacteriol. 1967 Jan;93(1):191–201. doi: 10.1002/path.1700930119. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES