Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 Jan;370:201–215. doi: 10.1113/jphysiol.1986.sp015930

The role of sensory fibres in the rat splanchnic nerve in the regulation of adrenal medullary secretion during stress.

Z Khalil, B G Livett, P D Marley
PMCID: PMC1192676  PMID: 2420973

Abstract

We have studied the involvement of sensory nerves containing substance P (SP) in the modulation of stress-induced catecholamine (CA) secretion from the sympathetic nervous system and adrenal medulla. Adrenaline and noradrenaline (NA) levels were measured in blood samples withdrawn from the inferior vena cava (i.v.c.) at 5 or 15 min intervals for periods of up to 60 min, in adult rats during stress induced by insulin or cold. Insulin stress caused a biphasic elevation of plasma CA. Previous studies from our laboratory have shown that the first phase lasting 30 min is neurogenic, and the second phase from 30 to 60 min is non-neurogenic in mechanism. In control adult rats (with normal levels of SP in their splanchnic nerve), insulin stress caused a slow and progressive secretion of adrenaline into the circulation for the first 30 min (neurogenic phase). In the period 30-60 min (non-neurogenic phase) plasma adrenaline and NA levels rose at a much higher rate. In capsaicin-pre-treated rats (in which SP levels in the splanchnic nerve were depleted by 68%) insulin stress produced a steady increase in plasma adrenaline levels for up to 5 min similar to that in insulin-stressed control animals; however, by 10 min the plasma adrenaline levels had fallen to basal and remained low up to 30 min. From 30 to 60 min, plasma adrenaline and NA levels rose steeply as seen with control animals. We conclude that capsaicin pre-treatment affected the neurogenic phase but did not affect the non-neurogenic phase. Cold stress increased the plasma adrenaline levels by a neurogenic mechanism over 30 min in control rats. In contrast, in capsaicin-pre-treated, cold-stressed rats, plasma adrenaline did not increase significantly. Plasma NA levels were also significantly lowered in capsaicin-pre-treated, cold-stressed rats during the neurogenic phase but NA increases were not dependent on an intact adrenal innervation. The results using both insulin stress and cold stress suggest that capsaicin-sensitive (sensory) nerve fibres in the adrenal medulla and in sympathetic ganglia are capable of modifying the secretory responses of these tissues to stress. Results from our previous in vitro work are compatible with the view that SP may be the neuromodulator released from such sensory nerves to produce these effects. This suggests that the previously reported ability of SP to modulate nicotinic receptor function in vitro by either inhibiting the nicotinic response or protecting against nicotinic desensitization may be more than a mere pharmacological curiosity.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
201

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alm P., Alumets J., Brodin E., Håkanson R., Nilsson G., Sjöberg N. O., Sundler F. Peptidergic (substance P) nerves in the genito-urinary tract. Neuroscience. 1978;3(4-5):419–425. doi: 10.1016/0306-4522(78)90044-1. [DOI] [PubMed] [Google Scholar]
  2. Araki T., Hamamoto T., Kurosawa M., Sato A. Response of adrenal efferent nerve activity to noxious stimulation of the skin. Neurosci Lett. 1980 Apr;17(1-2):131–135. doi: 10.1016/0304-3940(80)90074-9. [DOI] [PubMed] [Google Scholar]
  3. Boksa P., Livett B. G. Desensitization to nicotinic cholinergic agonists and K+, agents that stimulate catecholamine secretion, in isolated adrenal chromaffin cells. J Neurochem. 1984 Mar;42(3):607–617. doi: 10.1111/j.1471-4159.1984.tb02726.x. [DOI] [PubMed] [Google Scholar]
  4. Boksa P., Livett B. G. Substance P protects against desensitization of the nicotinic response in isolated adrenal chromaffin cells. J Neurochem. 1984 Mar;42(3):618–627. doi: 10.1111/j.1471-4159.1984.tb02727.x. [DOI] [PubMed] [Google Scholar]
  5. Chantry C. J., Seidler F. J., Slotkin T. A. Non-neurogenic mechanism for reserpine-induced release of catecholamines from the adrenal medulla of neonatal rats: possible modulation by opiate receptors. Neuroscience. 1982 Mar;7(3):673–678. doi: 10.1016/0306-4522(82)90073-2. [DOI] [PubMed] [Google Scholar]
  6. Clapham D. E., Neher E. Substance P reduces acetylcholine-induced currents in isolated bovine chromaffin cells. J Physiol. 1984 Feb;347:255–277. doi: 10.1113/jphysiol.1984.sp015065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dalsgaard C. J., Hökfelt T., Elfvin L. G., Skirboll L., Emson P. Substance P-containing primary sensory neurons projecting to the inferior mesenteric ganglion: evidence from combined retrograde tracing and immunohistochemistry. Neuroscience. 1982 Mar;7(3):647–654. doi: 10.1016/0306-4522(82)90070-7. [DOI] [PubMed] [Google Scholar]
  8. Edwards A. V. Adrenal catecholamine output in response to stimulation of the splanchnic nerve in bursts in the conscious calf. J Physiol. 1982 Jun;327:409–419. doi: 10.1113/jphysiol.1982.sp014239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Helme R. D., White D. M. Immunohistochemical localization of substance P in postmortem rat and human spinal cord. J Neuropathol Exp Neurol. 1983 Jan;42(1):99–105. doi: 10.1097/00005072-198301000-00009. [DOI] [PubMed] [Google Scholar]
  10. Himsworth R. L. Hypothalamic control of adrenaline secretion in response to insufficient glucose. J Physiol. 1970 Feb;206(2):411–417. doi: 10.1113/jphysiol.1970.sp009021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hökfelt T., Elfvin L. G., Schultzberg M., Goldstein M., Nilsson G. On the occurrence of substance P-containing fibers in sympathetic ganglia: immunohistochemical evidence. Brain Res. 1977 Aug 19;132(1):29–41. doi: 10.1016/0006-8993(77)90704-1. [DOI] [PubMed] [Google Scholar]
  12. Ikeda H. Adrenal medullary secretion in response to insulin hypoglycemia in dogs with transection of the spinal cord. Tohoku J Exp Med. 1968 Jun;95(2):153–168. doi: 10.1620/tjem.95.153. [DOI] [PubMed] [Google Scholar]
  13. Jancsó G., Hökfelt T., Lundberg J. M., Kiraly E., Halász N., Nilsson G., Terenius L., Rehfeld J., Steinbusch H., Verhofstad A. Immunohistochemical studies on the effect of capsaicin on spinal and medullary peptide and monoamine neurons using antisera to substance P, gastrin/CCK, somatostatin, VIP, enkephalin, neurotensin and 5-hydroxytryptamine. J Neurocytol. 1981 Dec;10(6):963–980. doi: 10.1007/BF01258524. [DOI] [PubMed] [Google Scholar]
  14. Jancsó G., Kiraly E., Jancsó-Gábor A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature. 1977 Dec 22;270(5639):741–743. doi: 10.1038/270741a0. [DOI] [PubMed] [Google Scholar]
  15. Khalil Z., Marley P. D., Livett B. G. Neonatal capsaicin treatment prevents insulin-stress-induced adrenal catecholamine secretion in vivo: possible involvement of sensory nerves containing substance P. Neurosci Lett. 1984 Mar 9;45(1):65–70. doi: 10.1016/0304-3940(84)90330-6. [DOI] [PubMed] [Google Scholar]
  16. Linnoila R. I., Diaugustine R. P., Hervonen A., Miller R. J. Distribution of [Met5]- and [Leu5]-enkephalin-, vasoactive intestinal polypeptide- and substance P-like immunoreactivities in human adrenal glands. Neuroscience. 1980;5(12):2247–2259. doi: 10.1016/0306-4522(80)90141-4. [DOI] [PubMed] [Google Scholar]
  17. Livett B. G., Boksa P., Dean D. M., Mizobe F., Lindenbaum M. H. Use of isolated chromaffin cells to study basic release mechanisms. J Auton Nerv Syst. 1983 Jan;7(1):59–86. doi: 10.1016/0165-1838(83)90069-3. [DOI] [PubMed] [Google Scholar]
  18. Livett B. G., Boksa P. Receptors and receptor modulation in cultured chromaffin cells. Can J Physiol Pharmacol. 1984 Apr;62(4):467–476. doi: 10.1139/y84-076. [DOI] [PubMed] [Google Scholar]
  19. Marley P., Livett B. G. Neuropeptides in the autonomic nervous system. CRC Crit Rev Clin Neurobiol. 1985;1(3):201–283. [PubMed] [Google Scholar]
  20. Matthews M. R., Cuello A. C. Substance P-immunoreactive peripheral branches of sensory neurons innervate guinea pig sympathetic neurons. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1668–1672. doi: 10.1073/pnas.79.5.1668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller A., Costa M., Furness J. B., Chubb I. W. Substance P immunoreactive sensory nerves supply the rat iris and cornea. Neurosci Lett. 1981 May 29;23(3):243–249. doi: 10.1016/0304-3940(81)90005-7. [DOI] [PubMed] [Google Scholar]
  22. Nagy J. I., Vincent S. R., Staines W. A., Fibiger H. C., Reisine T. D., Yamamura H. I. Neurotoxic action of capsaicin on spinal substance P neurons. Brain Res. 1980 Mar 31;186(2):435–444. doi: 10.1016/0006-8993(80)90987-7. [DOI] [PubMed] [Google Scholar]
  23. Pfister C., Görne R. C. Substanz-P-Immunofluorescenz im Nebennierenmark der Ratte. Acta Histochem. 1983;72(1):127–129. [PubMed] [Google Scholar]
  24. Role L. W. Substance P modulation of acetylcholine-induced currents in embryonic chicken sympathetic and ciliary ganglion neurons. Proc Natl Acad Sci U S A. 1984 May;81(9):2924–2928. doi: 10.1073/pnas.81.9.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stallcup W. B., Patrick J. Substance P enhances cholinergic receptor desensitization in a clonal nerve cell line. Proc Natl Acad Sci U S A. 1980 Jan;77(1):634–638. doi: 10.1073/pnas.77.1.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tagerud S. E., Cuello A. C. Dopamine release from the rat substantia nigra in vitro. Effect of raphe lesions and veratridine stimulation. Neuroscience. 1979;4(12):2021–2029. doi: 10.1016/0306-4522(79)90073-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES