Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 Feb;371:219–237. doi: 10.1113/jphysiol.1986.sp015970

Characterization of the acetylcholine-induced potassium current in rabbit cardiac Purkinje fibres.

E Carmeliet, K Mubagwa
PMCID: PMC1192719  PMID: 2422348

Abstract

Acetylcholine (ACh) induces a K+ current in rabbit cardiac Purkinje fibres. The question was studied whether ACh produces this effect by modifying the properties of K+ channels pre-existing in the absence of the neurotransmitter or whether it induces the formation of a different type of K+ channels. The relaxation properties of the ACh-induced current and its blockade by Cs+ and Ba2+ have been investigated using voltage clamp. During hyperpolarizing or depolarizing voltage pulses of moderate amplitude, the ACh-induced current is time independent. For large voltage pulses, time-dependent changes of the ACh-induced current are observed. These latter changes can be explained by intracellular K+ accumulation/depletion phenomena or by the effects of ACh on time-dependent currents (e.g. the late outward current, ix). Cs+ and Ba2+ block the ACh-induced current. The block produced by 20 mM-Cs+ is instantaneous and increases with hyperpolarization, i.e. it is voltage dependent. The block produced by Ba2+ at high concentrations (greater than 1 mM) is also instantaneous but complete at all potentials studied, and thus voltage independent. At these concentrations, either ion also blocks the background inward rectifier (iK1) current in a similar way. Low [Ba2+] (less than 0.1 mM) cause a block of the ACh-induced current which is instantaneous and little voltage dependent. The block of iK1 in contrast is time and voltage dependent for the same concentrations. These results indicate that the ACh-induced K+ current is different from the background iK1 current.

Full text

PDF
219

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argibay J. A., Dutey P., Ildefonse M., Ojeda C., Rougier O., Tourneur Y. Block by Cs of K current iK1 and of carbachol induced K current iCch in frog atrium. Pflugers Arch. 1983 Jun 1;397(4):295–299. doi: 10.1007/BF00580264. [DOI] [PubMed] [Google Scholar]
  2. Bechem M., Glitsch H. G., Pott L. Properties of an inward rectifying K channel in the membrane of guinea-pig atrial cardioballs. Pflugers Arch. 1983 Nov;399(3):186–193. doi: 10.1007/BF00656713. [DOI] [PubMed] [Google Scholar]
  3. Carmeliet E., Mubagwa K. Changes by acetylcholine of membrane currents in rabbit cardiac Purkinje fibres. J Physiol. 1986 Feb;371:201–217. doi: 10.1113/jphysiol.1986.sp015969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carmeliet E., Mubagwa K. Desensitization of the acetylcholine-induced increase of potassium conductance in rabbit cardiac Purkinje fibres. J Physiol. 1986 Feb;371:239–255. doi: 10.1113/jphysiol.1986.sp015971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carmeliet E., Ramon J. Effect of acetylcholine on time-independent currents in sheep cardiac Purkinje fibers. Pflugers Arch. 1980 Sep;387(3):207–216. doi: 10.1007/BF00580972. [DOI] [PubMed] [Google Scholar]
  6. Carmeliet E. Voltage dependent block of inward going rectification in cardiac Purkinje fibers by external Cs ions. Arch Int Pharmacodyn Ther. 1979 Dec;242(2):294–295. [PubMed] [Google Scholar]
  7. Cavalié A., Ochi R., Pelzer D., Trautwein W. Elementary currents through Ca2+ channels in guinea pig myocytes. Pflugers Arch. 1983 Sep;398(4):284–297. doi: 10.1007/BF00657238. [DOI] [PubMed] [Google Scholar]
  8. DiFrancesco D. A new interpretation of the pace-maker current in calf Purkinje fibres. J Physiol. 1981 May;314:359–376. doi: 10.1113/jphysiol.1981.sp013713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garnier D., Nargeot J., Ojeda C., Rougier O. The action of acetylcholine on background conductance in frog atrial trabeculae. J Physiol. 1978 Jan;274:381–396. doi: 10.1113/jphysiol.1978.sp012154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gay L. A., Stanfield P. R. Cs(+) causes a voltage-dependent block of inward K currents in resting skeletal muscle fibres. Nature. 1977 May 12;267(5607):169–170. doi: 10.1038/267169a0. [DOI] [PubMed] [Google Scholar]
  11. Hagiwara S., Miyazaki S., Rosenthal N. P. Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol. 1976 Jun;67(6):621–638. doi: 10.1085/jgp.67.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Isenberg G. Cardiac Purkinje fibers: cesium as a tool to block inward rectifying potassium currents. Pflugers Arch. 1976 Sep 30;365(2-3):99–106. doi: 10.1007/BF01067006. [DOI] [PubMed] [Google Scholar]
  13. Mubagwa K., Carmeliet E. Effects of acetylcholine on electrophysiological properties of rabbit cardiac Purkinje fibers. Circ Res. 1983 Dec;53(6):740–751. doi: 10.1161/01.res.53.6.740. [DOI] [PubMed] [Google Scholar]
  14. Noma A., Peper K., Trautwein W. Acetylcholine-induced potassium current fluctuations in the rabbit sino-atrial node. Pflugers Arch. 1979 Sep;381(3):255–262. doi: 10.1007/BF00583257. [DOI] [PubMed] [Google Scholar]
  15. Noma A., Trautwein W. Relaxation of the ACh-induced potassium current in the rabbit sinoatrial node cell. Pflugers Arch. 1978 Nov 30;377(3):193–200. doi: 10.1007/BF00584272. [DOI] [PubMed] [Google Scholar]
  16. Ohmori H. Inactivation kinetics and steady-state current noise in the anomalous rectifier of tunicate egg cell membranes. J Physiol. 1978 Aug;281:77–99. doi: 10.1113/jphysiol.1978.sp012410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ojeda C., Rougier O., Tourneur Y. Effects of Cs on acetylcholine induced current. Is ik1 increased by acetylcholine in frog atrium? Pflugers Arch. 1981 Jul;391(1):57–59. doi: 10.1007/BF00580695. [DOI] [PubMed] [Google Scholar]
  18. Osterrieder W., Yang Q. F., Trautwein W. Effects of barium on the membrane currents in the rabbit S-A node. Pflugers Arch. 1982 Jul;394(1):78–84. doi: 10.1007/BF01108311. [DOI] [PubMed] [Google Scholar]
  19. Sakmann B., Noma A., Trautwein W. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature. 1983 May 19;303(5914):250–253. doi: 10.1038/303250a0. [DOI] [PubMed] [Google Scholar]
  20. Sakmann B., Trube G. Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane. J Physiol. 1984 Feb;347:659–683. doi: 10.1113/jphysiol.1984.sp015089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Soejima M., Noma A. Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch. 1984 Apr;400(4):424–431. doi: 10.1007/BF00587544. [DOI] [PubMed] [Google Scholar]
  22. Standen N. B., Stanfield P. R. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. J Physiol. 1978 Jul;280:169–191. doi: 10.1113/jphysiol.1978.sp012379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Standen N. B., Stanfield P. R. Rubidium block and rubidium permeability of the inward rectifier of frog skeletal muscle fibres. J Physiol. 1980 Jul;304:415–435. doi: 10.1113/jphysiol.1980.sp013333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES