Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 Mar;372:245–259. doi: 10.1113/jphysiol.1986.sp016007

Cyclic adenosine 3',5'-monophosphate mediates beta-receptor actions of noradrenaline in rat hippocampal pyramidal cells.

D V Madison, R A Nicoll
PMCID: PMC1192761  PMID: 2425084

Abstract

Intracellular recordings were made from rat hippocampal CA1 pyramidal neurones in the in vitro slice preparation to study the actions of cyclic adenosine 3',5'-monophosphate (cyclic AMP). Application of the membrane permeant analogue of cyclic AMP, 8-Br cyclic AMP caused a small depolarization of the resting membrane potential accompanied by an increase in membrane input resistance and also reduced the amplitude of depolarization-evoked calcium-activated potassium after-hyperpolarizations (a.h.p.s.). 8-Br cyclic AMP reduced calcium-activated a.h.p.s but did not reduce calcium action potentials in these cells. 8-Br cyclic AMP also reduced action potential frequency accommodation. The effects of 8-Br cyclic AMP were not mimicked by cyclic AMP applied extracellularly but were imitated by intracellular injections of cyclic AMP. Activation of the endogenous adenylate cyclase of pyramidal cells either by intracellular injection of the stable guanosine 5'-triphosphate (GTP) analogue guanylyl-imidodiphosphate, or by extracellular application of forskolin, reduced the a.h.p. and accommodation. Reducing phosphodiesterase activity with application of either 3-isobutyl-1-methylxanthine or Ro20-1724 reduced the amplitude of the a.h.p. and potentiated the a.h.p.-blocking action of noradrenaline. Reducing adenylate cyclase activity by application of SQ22,536 slightly increased the amplitude of the (a.h.p.) and reduced the a.h.p.-blocking action of noradrenaline. We conclude that the beta-receptor actions of NA on hippocampal CA1 pyramidal cells are mediated by intracellularly produced cyclic AMP.

Full text

PDF
245

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom F. E. The role of cyclic nucleotides in central synaptic function. Rev Physiol Biochem Pharmacol. 1975;74:1–103. doi: 10.1007/3-540-07483-x_19. [DOI] [PubMed] [Google Scholar]
  2. Brown D. A., Dunn P. M. Cyclic adenosine 3',5'-monophosphate and beta-effects in rat isolated superior cervical ganglia. Br J Pharmacol. 1983 Jun;79(2):441–449. doi: 10.1111/j.1476-5381.1983.tb11017.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dolphin A., Hamont M., Bockaert J. The resolution of dopamine and beta 1- and beta 2-adrenergic-sensitive adenylate cyclase activities in homogenates of cat cerebellum, hippocampus and cerebral cortex. Brain Res. 1979 Dec 28;179(2):305–317. doi: 10.1016/0006-8993(79)90446-3. [DOI] [PubMed] [Google Scholar]
  4. Dunwiddie T. V., Hoffer B. J. Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Br J Pharmacol. 1980 May;69(1):59–68. doi: 10.1111/j.1476-5381.1980.tb10883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fredholm B. B., Jonzon B., Lindgren E., Lindström K. Adenosine receptors mediating cyclic AMP production in the rat hippocampus. J Neurochem. 1982 Jul;39(1):165–175. doi: 10.1111/j.1471-4159.1982.tb04715.x. [DOI] [PubMed] [Google Scholar]
  6. Harris D. N., Asaad M. M., Phillips M. B., Goldenberg H. J., Antonaccio M. J. Inhibition of adenylate cyclase in human blood platelets by 9-substituted adenine derivatives. J Cyclic Nucleotide Res. 1979;5(2):125–134. [PubMed] [Google Scholar]
  7. Henon B. K., McAfee D. A. The ionic basis of adenosine receptor actions on post-ganglionic neurones in the rat. J Physiol. 1983 Mar;336:607–620. doi: 10.1113/jphysiol.1983.sp014600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoffer B. J., Siggins G. R., Oliver A. P., Bloom F. E. Cyclic AMP-mediated adrenergic synapses to cerebellar Purkinje cells. Adv Cyclic Nucleotide Res. 1972;1:411–423. [PubMed] [Google Scholar]
  9. Kakiuchi S., Rall T. W., McIlwain H. The effect of electrical stimulation upon the accumulation of adenosine 3',5'-phosphate in isolated cerebral tissue. J Neurochem. 1969 Apr;16(4):485–491. doi: 10.1111/j.1471-4159.1969.tb06847.x. [DOI] [PubMed] [Google Scholar]
  10. Kakiuchi S., Rall T. W. Studies on adenosine 3',5'-phosphate in rabbit cerebral cortex. Mol Pharmacol. 1968 Jul;4(4):379–388. [PubMed] [Google Scholar]
  11. Lanthorn T., Storm J., Andersen P. Current-to-frequency transduction in CA1 hippocampal pyramidal cells: slow prepotentials dominate the primary range firing. Exp Brain Res. 1984;53(2):431–443. doi: 10.1007/BF00238173. [DOI] [PubMed] [Google Scholar]
  12. Loy R., Koziell D. A., Lindsey J. D., Moore R. Y. Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol. 1980 Feb 15;189(4):699–710. doi: 10.1002/cne.901890406. [DOI] [PubMed] [Google Scholar]
  13. Madison D. V., Nicoll R. A. Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. J Physiol. 1986 Mar;372:221–244. doi: 10.1113/jphysiol.1986.sp016006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Madison D. V., Nicoll R. A. Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol. 1984 Sep;354:319–331. doi: 10.1113/jphysiol.1984.sp015378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Madison D. V., Nicoll R. A. Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature. 1982 Oct 14;299(5884):636–638. doi: 10.1038/299636a0. [DOI] [PubMed] [Google Scholar]
  16. Nemeth P. R., Zafirov D., Wood J. D. Forskolin mimics slow synaptic excitation in myenteric neurons. Eur J Pharmacol. 1984 Jun 1;101(3-4):303–304. doi: 10.1016/0014-2999(84)90176-6. [DOI] [PubMed] [Google Scholar]
  17. Palmer G. C., Sulser F., Robison G. A. Effects of neurohumoral and adrenergic agents on cyclic AMP levels in various areas of the rat brain in vitro. Neuropharmacology. 1973 Apr;12(4):327–337. doi: 10.1016/0028-3908(73)90092-0. [DOI] [PubMed] [Google Scholar]
  18. RALL T. W., SUTHERLAND E. W. The regulatory role of adenosine-3', 5'-phosphate. Cold Spring Harb Symp Quant Biol. 1961;26:347–354. doi: 10.1101/sqb.1961.026.01.042. [DOI] [PubMed] [Google Scholar]
  19. Rall T. W., Sattin A. Factors influencing the accumulation of cyclic AMP in brain tissue. Adv Biochem Psychopharmacol. 1970;3:113–133. [PubMed] [Google Scholar]
  20. Rodbell M., Lin M. C., Salomon Y., Londos C., Harwood J. P., Martin B. R., Rendell M., Berman M. Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: evidence for multisite transition states. Adv Cyclic Nucleotide Res. 1975;5:3–29. [PubMed] [Google Scholar]
  21. SUTHERLAND E. W., OYE I., BUTCHER R. W. THE ACTION OF EPINEPHRINE AND THE ROLE OF THE ADENYL CYCLASE SYSTEM IN HORMONE ACTION. Recent Prog Horm Res. 1965;21:623–646. [PubMed] [Google Scholar]
  22. Schultz J., Daly J. W. Acummulation of cyclic adenosine 3', 5'-monophosphate in cerebral cortical slices from rat and mouse: stimulatory effect of alpha- and beta-adrenergic agents and adenosine. J Neurochem. 1973 Nov;21(5):1319–1326. doi: 10.1111/j.1471-4159.1973.tb07585.x. [DOI] [PubMed] [Google Scholar]
  23. Segal M., Bloom F. E. The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res. 1974 May 31;72(1):79–97. doi: 10.1016/0006-8993(74)90652-0. [DOI] [PubMed] [Google Scholar]
  24. Segal M., Greenberger V., Hofstein R. Cyclic AMP-generating systems in rat hippocampal slices. Brain Res. 1981 Jun 1;213(2):351–364. doi: 10.1016/0006-8993(81)90240-7. [DOI] [PubMed] [Google Scholar]
  25. Segal M. The action of norepinephrine in the rat hippocampus: intracellular studies in the slice preparation. Brain Res. 1981 Feb 9;206(1):107–128. doi: 10.1016/0006-8993(81)90104-9. [DOI] [PubMed] [Google Scholar]
  26. Siggins G. R., Hoffer B. J., Bloom F. E. Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. 3. Evidence for mediation of norepinephrine effects by cyclic 3',5'-adenosine monophosphate. Brain Res. 1971 Feb 5;25(3):535–553. doi: 10.1016/0006-8993(71)90459-8. [DOI] [PubMed] [Google Scholar]
  27. Siggins G. R., Oliver A. P., Hoffer B. J., Bloom F. E. Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science. 1971 Jan 15;171(3967):192–194. doi: 10.1126/science.171.3967.192. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES