Abstract
The effect of serotonin on brain microvascular permeability was studied by measurement of changes in the electrical resistance of the venular vascular wall, induced by this substance. Intravenous administration of serotonin decreased the electrical resistance in a dose-dependent manner with Kd congruent to 8.2 microM. The maximal decrease in electrical resistance was about 33%. The electrical resistance fell within seconds following the application and returned to the control value after 1-5 min. Serotonin applied to the outside of the brain vessels had no effect on electrical resistance. Pre-treatment with the 5-HT2 receptor antagonist Ketanserin blocked the serotonin response completely. The serotonin response was strongly inhibited by pre-treatment with the calcium-entry blocker verapamil (Isoptin). The findings demonstrate that serotonin reversibly increases blood-brain barrier permeability. The effect is mediated via 5-HT2 receptors located at the luminal surface of the cerebrovascular endothelium and is dependent on mobilization of extracellular Ca2+.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brightman M. W., Hori M., Rapoport S. I., Reese T. S., Westergaard E. Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol. 1973 Dec 15;152(4):317–325. doi: 10.1002/cne.901520402. [DOI] [PubMed] [Google Scholar]
- Buckley I. K., Ryan G. B. Increased vascular permeability. The effect of histamine and serotonin on rat mesenteric blood vessels in vivo. Am J Pathol. 1969 Jun;55(3):329–347. [PMC free article] [PubMed] [Google Scholar]
- Bundgaard M. Ultrastructure of frog cerebral and pial microvessels and their impermeability to lanthanum ions. Brain Res. 1982 Jun 3;241(1):57–65. doi: 10.1016/0006-8993(82)91228-8. [DOI] [PubMed] [Google Scholar]
- Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
- Crone C., Christensen O. Electrical resistance of a capillary endothelium. J Gen Physiol. 1981 Apr;77(4):349–371. doi: 10.1085/jgp.77.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crone C. Lack of selectivity to small ions in paracellular pathways in cerebral and muscle capillaries of the frog. J Physiol. 1984 Aug;353:317–337. doi: 10.1113/jphysiol.1984.sp015338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crone C., Olesen S. P. Electrical resistance of brain microvascular endothelium. Brain Res. 1982 Jun 3;241(1):49–55. doi: 10.1016/0006-8993(82)91227-6. [DOI] [PubMed] [Google Scholar]
- Dux E., Joó F. Effects of histamine on brain capillaries. Fine structural and immunohistochemical studies after intracarotid infusion. Exp Brain Res. 1982;47(2):252–258. doi: 10.1007/BF00239384. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
- Grega G. J., Dobbins D. E., Scott J. B., Haddy F. J. Effects of histamine and increased venous pressure on transmicrovascular protein transport. Microvasc Res. 1979 Jul;18(1):95–104. doi: 10.1016/0026-2862(79)90019-0. [DOI] [PubMed] [Google Scholar]
- Heltianu C., Simionescu M., Simionescu N. Histamine receptors of the microvascular endothelium revealed in situ with a histamine-ferritin conjugate: characteristic high-affinity binding sites in venules. J Cell Biol. 1982 May;93(2):357–364. doi: 10.1083/jcb.93.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirano A., Becker N. H., Zimmerman H. M. The use of peroxidase as a tracer in studies of alterations in the blood-brain barrier. J Neurol Sci. 1970 Mar;10(3):205–213. doi: 10.1016/0022-510x(70)90150-4. [DOI] [PubMed] [Google Scholar]
- Joris I., Majno G., Ryan G. B. Endothelial contraction in vivo: a study of the rat mesentery. Virchows Arch B Cell Pathol. 1972;12(1):73–83. doi: 10.1007/BF02893987. [DOI] [PubMed] [Google Scholar]
- MAJNO G., PALADE G. E., SCHOEFL G. I. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961 Dec;11:607–626. doi: 10.1083/jcb.11.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruki C., Spatz M., Ueki Y., Nagatsu I., Bembry J. Cerebrovascular endothelial cell culture: metabolism and synthesis of 5-hydroxytryptamine. J Neurochem. 1984 Aug;43(2):316–319. doi: 10.1111/j.1471-4159.1984.tb00902.x. [DOI] [PubMed] [Google Scholar]
- Olesen S. P., Crone C. Electrical resistance of muscle capillary endothelium. Biophys J. 1983 Apr;42(1):31–41. doi: 10.1016/S0006-3495(83)84366-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olesen S. P., de Saint-Aubain M. L., Bundgaard M. Permeabilities of single arterioles and venules in the frog skin: a functional and morphological study. Microvasc Res. 1984 Jul;28(1):1–22. doi: 10.1016/0026-2862(84)90025-6. [DOI] [PubMed] [Google Scholar]
- Raichle M. E., Grubb R. L., Jr Regulation of brain water permeability by centrally-released vasopressin. Brain Res. 1978 Mar 17;143(1):191–194. doi: 10.1016/0006-8993(78)90766-7. [DOI] [PubMed] [Google Scholar]
- Reese T. S., Karnovsky M. J. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967 Jul;34(1):207–217. doi: 10.1083/jcb.34.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renkin E. M., Curry F. E., Michel C. C. Failure of histamine, 5-hydroxytryptamine, or bradykinin to increase capillary permeability to plasma proteins in frogs: action of compound 48/80. Microvasc Res. 1974 Sep;8(2):213–217. doi: 10.1016/0026-2862(74)90095-8. [DOI] [PubMed] [Google Scholar]
- Strum J. M., Junod A. F. Radioautographic demonstration of 5-hydroxytryptamine- 3 H uptake by pulmonary endothelial cells. J Cell Biol. 1972 Sep;54(3):456–467. doi: 10.1083/jcb.54.3.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svensjö E., Arfors K. E., Arturson G., Rutili G. The hamster cheek pouch preparation as a model for studies of macromolecular permeability of the microvasculature. Ups J Med Sci. 1978;83(1):71–79. doi: 10.3109/03009737809179115. [DOI] [PubMed] [Google Scholar]
- Takada M., Mori K. Spontaneous separation of the endothelial cell junctions of the venules in the large salivary glands of the intact mouse. Microvasc Res. 1971 Apr;3(2):204–206. doi: 10.1016/0026-2862(71)90023-9. [DOI] [PubMed] [Google Scholar]
- Tazawa H., Mochizuki M., Piiper J. Respiratory gas transport by the incompletely separated double circulation in the bullfrog, Rana catesbeiana. Respir Physiol. 1979 Feb;36(2):77–95. doi: 10.1016/0034-5687(79)90016-1. [DOI] [PubMed] [Google Scholar]
- Van Neuten J. M., Van Beek J., Vanhoutte P. M. Inhibitory effect of lidoflazine on contractions of isolated canine coronary arteries caused by norepinephrine, 5-hydroxytryptamine, high potassium, anoxia and ergonovine maleate. J Pharmacol Exp Ther. 1980 Apr;213(1):179–187. [PubMed] [Google Scholar]