Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 May;362:215–231. doi: 10.1113/jphysiol.1985.sp015672

Effect of ouabain on tone, membrane potential and sodium efflux compared with [3H]ouabain binding in rat resistance vessels.

C Aalkjaer, M J Mulvany
PMCID: PMC1192891  PMID: 2410600

Abstract

To investigate the mechanism by which ouabain causes acute increase in peripheral resistance, the effect of ouabain on vessel tone, 22Na efflux and membrane potential has been compared with the binding of [3H]ouabain in rat isolated mesenteric resistance vessels (lumen diameter approximately 200 microns). Ouabain at concentrations between 1 X 10(-8) and 1 X 10(-3) M had no effect on the tone of resting vessels but caused potentiation of the tone of vessels which were submaximally contracted with noradrenaline. In the entire concentration range, these acute potentiating effects of ouabain on vessel tone correlated well with an acute inhibitory effect on 22Na efflux and with acute [3H]ouabain binding, consistent with the vasoconstrictor effect of ouabain being associated with inhibition of the Na-K pump. At all concentrations, in both resting and activated vessels, ouabain exposure caused an acute concentration-dependent depolarization of the membrane. At low ouabain concentrations (1 X 10(-6) and 1 X 10(-5) M) the potentiating effect on vessel tone and the inhibitory effect on 22Na efflux were transient, so that after 10 min no effect of ouabain was seen. This was consistent with these ouabain concentrations failing to cause a measurable increase in the intracellular Na concentration ([Na]i) after longer term (up to 2 h) exposure. The recovery of 22Na efflux was due to a recovery of the ouabain-sensitive part of the 22Na efflux, suggesting that the transitory nature of these effects is due to stimulation of uninhibited Na-K pumps. The transient effects of low ouabain concentrations contrasted with binding experiments where, with 1 X 10(-6) M-ouabain, the binding first peaked after 30 min with only a small decline thereafter. With higher concentrations of ouabain (1 X 10(-4) and 1 X 10(-3) M), the potentiating effect was also transitory, but 22Na efflux was permanently inhibited and the [Na]i rose. The possibility of there being two populations of ouabain binding sites having different affinities, was supported by the observation of shoulders in the ouabain concentration-effect characteristics obtained with respect to the mechanical potentiation of noradrenaline responses, the 22Na efflux and the acute ouabain binding. In all cases a shoulder was seen between 1 X 10(-6) and 1 X 10(-5) M-ouabain. The results are consistent with the vasoconstrictor effect of ouabain being due to depolarization of the membrane as a consequence of inhibition of the Na-K pump.

Full text

PDF
215

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aalkjaer C., Mulvany M. J. Sodium metabolism in rat resistance vessels. J Physiol. 1983 Oct;343:105–116. doi: 10.1113/jphysiol.1983.sp014883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams R. J., Schwartz A., Grupp G., Grupp I., Lee S. W., Wallick E. T., Powell T., Twist V. W., Gathiram P. High-affinity ouabain binding site and low-dose positive inotropic effect in rat myocardium. Nature. 1982 Mar 11;296(5853):167–169. doi: 10.1038/296167a0. [DOI] [PubMed] [Google Scholar]
  3. Adams R. J., Wallick E. T., Asano G., DiSalvo J., Fondacaro J. D., Jacobson E. D. Canine mesenteric artery Na+,K+-ATPase: vasopressor receptor for digitalis? J Cardiovasc Pharmacol. 1983 May-Jun;5(3):468–482. doi: 10.1097/00005344-198305000-00020. [DOI] [PubMed] [Google Scholar]
  4. Aprigliano O., Hermsmeyer K. In vitro denervation of the portal vein and caudal artery of the rat. J Pharmacol Exp Ther. 1976 Sep;198(3):568–577. [PubMed] [Google Scholar]
  5. Brading A. F., Widdicombe J. H. An estimate of sodium-potassium pump activity and the number of pump sites in the smooth muscle of the guinea-pig taenia coli, using (3H)ouabain. J Physiol. 1974 Apr;238(2):235–249. doi: 10.1113/jphysiol.1974.sp010521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeMots H., Rahimtoola S. H., McAnulty J. H., Porter G. A. Effects of ouabain on coronary and systemic vascular resistance and myocardial oxygen consumption in patients without heart failure. Am J Cardiol. 1978 Jan;41(1):88–93. doi: 10.1016/0002-9149(78)90137-6. [DOI] [PubMed] [Google Scholar]
  7. Deth R. C., Lynch C. J. The binding of 3H-ouabain to Na+-K+ ATPase sites in arterial smooth muscle. Pharmacology. 1980;21(1):29–37. doi: 10.1159/000137412. [DOI] [PubMed] [Google Scholar]
  8. Eisner D. A., Vaughan-Jones R. D., Lederer W. J. Active transport and inotropic state in guinea pig left atrium. Circ Res. 1983 Dec;53(6):834–836. doi: 10.1161/01.res.53.6.834. [DOI] [PubMed] [Google Scholar]
  9. Erdmann E., Philipp G., Scholz H. Cardiac glycoside receptor, (Na+ + K+)-ATPase activity and force of contraction in rat heart. Biochem Pharmacol. 1980 Dec;29(24):3219–3229. doi: 10.1016/0006-2952(80)90295-6. [DOI] [PubMed] [Google Scholar]
  10. Finet M., Noel F., Godfraind T. Inotropic effect and binding sites of ouabain to rat heart. Arch Int Pharmacodyn Ther. 1982 Mar;256(1):168–170. [PubMed] [Google Scholar]
  11. Ghysel-Burton J., Godfraind T. Stimulation and inhibition of the sodium pump by cardioactive steroids in relation to their binding sites and their inotropic effect on guinea-pig isolated atria. Br J Pharmacol. 1979 Jun;66(2):175–184. doi: 10.1111/j.1476-5381.1979.tb13662.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Godfraind T., Ghysel-Burton J. Binding sites related to ouabain-induced stimulation or inhibition of the sodium pump. Nature. 1977 Jan 13;265(5590):165–166. doi: 10.1038/265165a0. [DOI] [PubMed] [Google Scholar]
  13. Göthberg G., Jandhyala B., Folkow B. Studies on the role of sodium-potassium-activated ATPase as determinant of vascular reactivity in Wistar-Kyoto and spontaneously hypertensive rats. Clin Sci (Lond) 1980 Dec;59 (Suppl 6):187s–189s. doi: 10.1042/cs059187s. [DOI] [PubMed] [Google Scholar]
  14. Hamlyn J. M., Ringel R., Schaeffer J., Levinson P. D., Hamilton B. P., Kowarski A. A., Blaustein M. P. A circulating inhibitor of (Na+ + K+)ATPase associated with essential hypertension. Nature. 1982 Dec 16;300(5893):650–652. doi: 10.1038/300650a0. [DOI] [PubMed] [Google Scholar]
  15. Hermsmeyer K. Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension. Circ Res. 1976 May;38(5):362–367. doi: 10.1161/01.res.38.5.362. [DOI] [PubMed] [Google Scholar]
  16. Hirst G. D., van Helden D. F. Ionic basis of the resting potential of submucosal arterioles in the ileum of the guinea-pig. J Physiol. 1982 Dec;333:53–67. doi: 10.1113/jphysiol.1982.sp014438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karaki H., Ozaki H., Urakawa N. Effects of ouabain and potassium-free solution on the contraction of isolated blood vessels. Eur J Pharmacol. 1978 Apr 15;48(4):439–443. doi: 10.1016/0014-2999(78)90172-3. [DOI] [PubMed] [Google Scholar]
  18. Lang S., Blaustein M. P. The role of the sodium pump in the control of vascular tone in the rat. Circ Res. 1980 Apr;46(4):463–470. doi: 10.1161/01.res.46.4.463. [DOI] [PubMed] [Google Scholar]
  19. Lewis S. A., Wills N. K. Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder. J Physiol. 1983 Aug;341:169–184. doi: 10.1113/jphysiol.1983.sp014799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mansier P., Lelievre L. G. CA2+-free perfusion of rat heart reveals a (Na+ + K+)ATPase form highly sensitive to ouabain. Nature. 1982 Dec 9;300(5892):535–537. doi: 10.1038/300535a0. [DOI] [PubMed] [Google Scholar]
  21. Mulvany M. J., Aalkjaer C., Petersen T. T. Intracellular sodium, membrane potential, and contractility of rat mesenteric small arteries. Circ Res. 1984 Jun;54(6):740–749. doi: 10.1161/01.res.54.6.740. [DOI] [PubMed] [Google Scholar]
  22. Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
  23. Mulvany M. J., Hansen O. K., Aalkjaer C. Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circ Res. 1978 Dec;43(6):854–864. doi: 10.1161/01.res.43.6.854. [DOI] [PubMed] [Google Scholar]
  24. Mulvany M. J., Nilsson H., Flatman J. A., Korsgaard N. Potentiating and depressive effects of ouabain and potassium-free solutions on rat mesenteric resistance vessels. Circ Res. 1982 Oct;51(4):514–524. doi: 10.1161/01.res.51.4.514. [DOI] [PubMed] [Google Scholar]
  25. Mulvany M. J., Nilsson H., Flatman J. A. Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J Physiol. 1982 Nov;332:363–373. doi: 10.1113/jphysiol.1982.sp014418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Noble D. Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovasc Res. 1980 Sep;14(9):495–514. doi: 10.1093/cvr/14.9.495. [DOI] [PubMed] [Google Scholar]
  27. Poston L., Sewell R. B., Wilkinson S. P., Richardson P. J., Williams R., Clarkson E. M., MacGregor G. A., de Wardener H. E. Evidence for a circulating sodium transport inhibitor in essential hypertension. Br Med J (Clin Res Ed) 1981 Mar 14;282(6267):847–849. doi: 10.1136/bmj.282.6267.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robinson B. F., Phillips R. J., Wilson P. N., Chiodini P. L. Effect of local infusion of ouabain on human forearm vascular resistance and on response to potassium, verapamil and sodium nitroprusside. J Hypertens. 1983 Aug;1(2):165–169. doi: 10.1097/00004872-198308000-00009. [DOI] [PubMed] [Google Scholar]
  29. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]
  30. Van Breemen C., Aaronson P., Loutzenhiser R. Sodium-calcium interactions in mammalian smooth muscle. Pharmacol Rev. 1978 Jun;30(2):167–208. [PubMed] [Google Scholar]
  31. Van Breemen C., Wuytack F., Casteels R., Martinelli B., Campailla E., Ferrari G. Stimulation of 45Ca efflux from smooth muscle cells by metabolic inhibition and high K depolarization. Pflugers Arch. 1975 Sep 9;359(3):183–196. doi: 10.1007/BF00587378. [DOI] [PubMed] [Google Scholar]
  32. Vatner S. F., Higgins C. B., Franklin D., Braunwald E. Effects of a digitalis glycoside on coronary and systemic dynamics in conscious dogs. Circ Res. 1971 Apr;28(4):470–479. doi: 10.1161/01.res.28.4.470. [DOI] [PubMed] [Google Scholar]
  33. de Wardener H. E., MacGregor G. A. Dahl's hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: its possible role in essential hypertension. Kidney Int. 1980 Jul;18(1):1–9. doi: 10.1038/ki.1980.104. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES