Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Jun;363:151–167. doi: 10.1113/jphysiol.1985.sp015701

The role of cyclic nucleotides in modulation of the membrane potential of the Schwann cell of squid giant nerve fibre.

P D Evans, V Reale, J Villegas
PMCID: PMC1192920  PMID: 2991504

Abstract

The role of cyclic nucleotides in mediating the effects of nicotine cholinergic receptors has been investigated in Schwann cells of the giant nerve fibre of the squid. Elevation of cyclic AMP levels in this preparation by means of the phosphodiesterase inhibitor, theophylline, by the diterpene adenylate cyclase activator, forskolin, and by cyclic nucleotide analogues mimics the action of activating the nicotinic cholinergic receptors in producing a long-lasting hyperpolarization of the membrane potential of the Schwann cell. Theophylline and forskolin also potentiate the effects of carbachol and of neural stimulation on the Schwann cell. The results suggest that the nicotinic receptor of the squid Schwann cell is likely to mediate its effects via a mechanism that activates adenylate cyclase. The results are discussed in terms of the role of cyclic AMP in the complex multistep interaction between the giant axon of the squid and its surrounding Schwann-cell layer.

Full text

PDF
151

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battelle B. A., Kravitz E. A. Targets of octopamine action in the lobster: cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. J Pharmacol Exp Ther. 1978 May;205(2):438–448. [PubMed] [Google Scholar]
  2. Baylor D. A., Nicholls J. G. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):555–569. doi: 10.1113/jphysiol.1969.sp008879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J., Rapp P. E. A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Biol. 1979 Aug;81:217–279. doi: 10.1242/jeb.81.1.217. [DOI] [PubMed] [Google Scholar]
  5. Bevan S., Gray P. T., Ritchie J. M. A calcium-activated cation-selective channel in rat cultured Schwann cells. Proc R Soc Lond B Biol Sci. 1984 Sep 22;222(1228):349–355. doi: 10.1098/rspb.1984.0068. [DOI] [PubMed] [Google Scholar]
  6. Currie D. N., Kelly J. S. Glial versus neuronal uptake of glutamate. J Exp Biol. 1981 Dec;95:181–193. doi: 10.1242/jeb.95.1.181. [DOI] [PubMed] [Google Scholar]
  7. Daly J. W. Forskolin, adenylate cyclase, and cell physiology: an overview. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:81–89. [PubMed] [Google Scholar]
  8. Enyedi P., Fredholm B. B. Calcium-dependent enhancement by carbachol of the VIP-induced cyclic AMP accumulation in cat submandibular gland. Acta Physiol Scand. 1984 Apr;120(4):523–528. doi: 10.1111/j.1748-1716.1984.tb07416.x. [DOI] [PubMed] [Google Scholar]
  9. Evans P. D. A modulatory octopaminergic neurone increases cyclic nucleotide levels in locust skeletal muscle. J Physiol. 1984 Mar;348:307–324. doi: 10.1113/jphysiol.1984.sp015112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans P. D. The role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. J Physiol. 1984 Mar;348:325–340. doi: 10.1113/jphysiol.1984.sp015113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heumann R., Villegas J., Herzfeld D. W. Acetylcholine synthesis in the Schwann cell and axon in the giant nerve fiber of the squid. J Neurochem. 1981 Feb;36(2):765–768. doi: 10.1111/j.1471-4159.1981.tb01654.x. [DOI] [PubMed] [Google Scholar]
  13. Huganir R. L., Greengard P. cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1130–1134. doi: 10.1073/pnas.80.4.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuffler S. W., Nicholls J. G. The physiology of neuroglial cells. Ergeb Physiol. 1966;57:1–90. [PubMed] [Google Scholar]
  15. Lasek R. J., Tytell M. A. Macromolecular transfer from glia to the axon. J Exp Biol. 1981 Dec;95:153–165. doi: 10.1242/jeb.95.1.153. [DOI] [PubMed] [Google Scholar]
  16. Miller J. P., Beck A. H., Simon L. N., Meyer R. B., Jr Induction of hepatic tyrosine aminotransferase in vivo by derivatives of cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1975 Jan 25;250(2):426–431. [PubMed] [Google Scholar]
  17. Mudge A. W. Effect of non-neuronal cells on peptide content of cultured sensory neurones. J Exp Biol. 1981 Dec;95:195–203. doi: 10.1242/jeb.95.1.195. [DOI] [PubMed] [Google Scholar]
  18. Neering I. R., McBurney R. N. Role for microsomal Ca storage in mammalian neurones? Nature. 1984 May 10;309(5964):158–160. doi: 10.1038/309158a0. [DOI] [PubMed] [Google Scholar]
  19. Patterson P. H. Environmental determination of autonomic neurotransmitter functions. Annu Rev Neurosci. 1978;1:1–17. doi: 10.1146/annurev.ne.01.030178.000245. [DOI] [PubMed] [Google Scholar]
  20. Potter D. D., Furshpan E. J., Landis S. C. Transmitter status in cultured rat sympathetic neurons: plasticity and multiple function. Fed Proc. 1983 Apr;42(6):1626–1632. [PubMed] [Google Scholar]
  21. Rougon G., Noble M., Mudge A. W. Neuropeptides modulate the beta-adrenergic response of purified astrocytes in vitro. Nature. 1983 Oct 20;305(5936):715–717. doi: 10.1038/305715a0. [DOI] [PubMed] [Google Scholar]
  22. Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
  23. Seamon K. B., Wetzel B. Interaction of forskolin with dually regulated adenylate cyclase. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:91–99. [PubMed] [Google Scholar]
  24. Villegas J. Axon-Schwann cell interaction in the squid nerve fibre. J Physiol. 1972 Sep;225(2):275–296. doi: 10.1113/jphysiol.1972.sp009940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Villegas J. Axon/Schwann-cell relationships in the giant nerve fibre of the squid. J Exp Biol. 1981 Dec;95:135–151. doi: 10.1242/jeb.95.1.135. [DOI] [PubMed] [Google Scholar]
  26. Villegas J. Characterization of acetylcholine receptors in the Schwann cell membrane of the squid nerve fibre. J Physiol. 1975 Aug;249(3):679–689. doi: 10.1113/jphysiol.1975.sp011037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Villegas J. Effects of acetylcholine and carbamylcholine on the axon and Schwann cell electrical potentials in the squid nerve fibre. J Physiol. 1974 Nov;242(3):647–659. doi: 10.1113/jphysiol.1974.sp010728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Villegas J. Effects of tubocurarine and eserine on the axon-Schwann cell relationship in the squid nerve fibre. J Physiol. 1973 Jul;232(1):193–208. doi: 10.1113/jphysiol.1973.sp010264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Villegas J., Jenden D. J. Acetylcholine content of the Schwann cell and axon in the giant nerve fibre of the squid. J Neurochem. 1979 Mar;32(3):761–766. doi: 10.1111/j.1471-4159.1979.tb04559.x. [DOI] [PubMed] [Google Scholar]
  30. Villegas J., Sevcik C., Barnola F. V., Villegas R. Grayanotoxin, veratrine, and tetrodotoxin-sensitive sodium pathways in the Schwann cell membrane of squid nerve fibers. J Gen Physiol. 1976 Mar;67(3):369–380. doi: 10.1085/jgp.67.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES