Abstract
We introduce a symmetry class for higher dimensional partitions—fully complementary higher dimensional partitions (FCPs)—and prove a formula for their generating function. By studying symmetry classes of FCPs in dimension 2, we define variations of the classical symmetry classes for plane partitions. As a by-product, we obtain conjectures for three new symmetry classes of plane partitions and prove that another new symmetry class, namely quasi-transpose-complementary plane partitions, are equinumerous to symmetric plane partitions.
Keywords: Plane partitions, Higher dimensional partitions, MacMahon, Symmetry classes
Introduction
A plane partition is an array of non-negative integers with all but finitely many entries equal to 0, which is weakly decreasing along rows and columns, i.e. and ; see Fig. 1 (left) for an example. MacMahon [12] introduced them at the end of the 19th century as two dimensional generalisations of ordinary partitions and proved in [14] two enumeration results: He showed that the generating function of plane partitions is given by
| 1.1 |
where the sum is over all plane partitions and is defined as the sum of the entries of . A plane partition is said to be contained in an (a, b, c)-box if the entries of are at most c and implies and . The plane partition in Fig. 1 is contained in a (3, 4, 4)-box or any box of larger size. MacMahon showed that the weighted enumeration of plane partitions inside an (a, b, c)-box is given by
| 1.2 |
where the sum is over all plane partitions contained in an (a, b, c)-box.
Fig. 1.

A plane partition contained in a (3, 4, 4)-box on the left, its graphical representation as stacks of unit cubes (middle) and the associated lozenge tiling (right)
While plane partitions were already introduced at the end of the 19th century, they came into the focus of the combinatorics community mainly in the second half of the last century. One major goal was to prove the enumeration formulas for the ten symmetry classes of plane partitions. These classes are defined via combinations of the three operations reflection, rotation and complementation which are best defined by viewing plane partitions as lozenge tilings: first, we represent a plane partition as stacks of unit cubes by placing unit cubes at the position (i, j), see Fig. 1 (middle). By further displaying the shape of the (a, b, c)-box in which we regard the plane partition in and forgetting the shading of the cubes, we obtain a lozenge tiling of a hexagon with side lengths a, b, c, a, b, c, see Fig. 1 (right). Interestingly, this was first observed by David and Tomei [7] in 1989. The operation reflection is defined as vertical reflection of the lozenge tiling, rotation as rotation by 120 degrees and complementation as rotation by 180 degree. While MacMahon [13] already considered plane partitions invariant under reflection, the operation complementation was first described by Mills et al. [15] in 1986. A systematic study of the 10 symmetry classes which are defined through these operations was initiated by Stanley [18, 19] and finished in 2011 by Koutschan et al. [9]. For a more detailed overview, see [11].
Already in 1916, MacMahon [14] introduced a further generalisation of partitions to arbitrary dimension, namely higher dimensional partitions. A d-dimensional partition is an array of non-negative integers with all but finitely many entries equal to 0, such that for all indices and , where denotes the k-th unit vector. We say that is contained in an -box if all entries are at most and implies that for all . Contrary to dimension 1 (partitions) and dimension 2 (plane partitions), there are hardly any results known for higher dimensional partitions in dimension 3 or higher. MacMahon conjectured a generating formula for each dimension d but it was disproved by Atkin et al. [2] in 1967; see also [8]. Only recently the first enumeration result for higher dimensional partitions was presented by Amanov and Yeliussizov [1]. They were able to “correct” MacMahon’s formula and showed that
| 1.3 |
where the sum is over all d-dimensional partitions, and and are certain statistics defined in [1, Sects. 4 and 5].
In this paper we introduce a new symmetry class for plane partitions, namely quarter complementary plane partitions (QCPPs), which can be generalised immediately to higher dimensional partitions. Instead of presenting the definition for QCPPs (it follows from the corresponding definition for higher dimensional partitions in Sect. 2.2) we aim to convey the geometric intuition of this symmetry class next.
Let be a plane partition inside an (a, b, c)-box and define by the “dual plane partition” of inside the (a, b, c)-box. Geometrically, we think of the dual plane partition as stacks of unit cubes hanging from the ceiling of the (a, b, c)-box instead of standing at its floor, where the first stack is positioned at the corner with coordinates (a, b, c) instead of the corner with coordinates (1, 1, 1), see Fig. 2 (left) for a sketch. It is not difficult to see, compare for example with [11, Sect. 6], that is self-complementary if and fill the (a, b, c)-box without overlap when regarded as stacks of unit cubes. In the array perspective this means for all and . We can now generalise this idea. Let C be a set of corners of the (a, b, c)-box. We define a plane partition to be C-complementary if we can fill the (a, b, c)-box without overlap by copies of placed at the corners of C similar to before, i.e. if a copy of is placed at a corner of the form then its stacks of unit cubes hang from the ceiling of the box instead of standing on its floor. It is immediate that such a can only exist if . We can ignore the cases and since they are trivial.
Fig. 2.

The labels of the corners of an (a, b, c)-box (middle), the corners where a copy of is placed for self-complementary plane partitions (left), and the corners where copies of are placed for quarter complementary plane partitions (right). The colour and lengths of the arrows indicate the orientation of the copies
For , there are up to rotation three possible configurations , , and . It is immediate that there is only one -complementary plane partition if a is even and none otherwise. Each -complementary plane partition is uniquely determined by its boxes of the form (x, y, 1). Hence, we can map them bijectively to the set of partitions inside an (a, b)-box which satisfy . As described before, -complementary plane partitions are exactly self-complementary plane partitions.
For , there are up to rotation six possible configurations:
see Fig. 2 (right) for a sketch of . There is only one -complementary plane partition if 2 divides both a and b and none otherwise, analogously for . It is immediate that there are no - or -complementary plane partitions and that -complementary plane partitions do not exist for odd c and are in bijection to -complementary plane partitions otherwise. Finally, -complementary plane partitions are the objects we want to call quarter complementary plane partitions.
In Sect. 2, we generalise this geometric approach to higher dimensions using higher dimensional Ferrers diagrams. Translating the obtained criteria on Ferrers diagrams back to the array description for higher dimensional partitions, we obtain in Lemma 2.2 the definition of d-dimensional fully complementary partitions (FCPs). In Proposition 2.4, we describe the recursive structure of FCPs which implies immediately our main result.
Theorem 1.1
Let , and denote by the set of fully complementary partitions inside a -box. Then,
| 1.4 |
The recursive structure of FCPs can be further used to construct a bijection between d-dimensional FCPs and lattice paths in the positive -dimensional orthant starting from any integer point in the interior of its d-dimensional boundary.
In Sect. 3, we consider the “typical” symmetry classes for plane partitions restricted to two-dimensional FCPs, i.e. quarter complementary plane partitions. It turns out that there exists at most one symmetric QCPP in an (a, b, c)-box and that a QCPP can be neither cyclically symmetric nor transpose-complementary. By introducing two variations, namely quasi-symmetric and quasi-transpose-complementary, we are able to show enumerative results for the corresponding symmetry classes and combinations thereof for QCPPs, see Proposition 3.1 to Proposition 3.4. It is an immediate question if the enumeration of plane partitions under these variations of symmetry classes have closed expressions. In Sect. 4, we consider these new symmetry classes and similar generalisations. We present three conjectures, the corresponding data generated in computer experiments are given in Appendix A, and the proof of the next result.
Theorem 1.2
A plane partition inside an (n, n, c)-box is called quasi-transpose-complementary if holds for all with . The number of quasi-transpose-complementary plane partitions inside an (n, n, c)-box is equal to the number of symmetric plane partitions inside an (n, n, c)-box.
We present different proofs of the above theorem and discuss how it is related to known results on plane partitions, lozenge tilings and perfect matchings, respectively. For odd c, we relate quasi-transpose-complementary plane partitions to transpose-complementary plane partitions and obtain immediately the following numerical connection between symmetric and transpose-complementary plane partitions which seems to be new
| 1.5 |
where denotes the number of transpose-complementary plane partitions inside an (n, n, 2c)-box and denotes the number of symmetric plane partitions inside an (n, n, c)-box. Since the proof of the above theorem is computational, it is still an open question if one can find a bijection between symmetric plane partitions and quasi-transpose-complementary plane partitions.
Fully Complementary Partitions
Fully Complementary Ferrers Diagrams
A d-dimensional Ferrers diagram is a finite subset of such that implies whenever for all . Equivalently, is an order ideal in the poset where the order relation is component-wise the order relation of the integers. For a positive integer n, we define . We say that is contained in an -box for positive integers , if is a subset of . It is immediate that the map
is a bijection between d-dimensional Ferrers diagrams and d-dimensional partitions which respects the property of being contained in an -box. Therefore, we identify for the remainder of this paper a d-dimensional Ferrers diagram with the d-dimensional partition it is mapped to.
Let be a sequence of positive integers and . We define the bijection from onto itself as
If is clear from the context, we will omit it and write instead of . We can use the map to rephrase the definition of quarter complementary plane partitions. Let be a two-dimensional Ferrers diagram contained in a -box. Then, corresponds to the copy of placed in the corner of the box, to the copy of placed in the corner and to the copy placed in the corner . Hence, corresponds to a QCPP if have pairwise empty intersection and their union is equal to . We extend this definition to any dimension d.
Definition 2.1
Let be positive integers. A d-dimensional Ferrers diagram is called fully complementary inside a -box if for all pairs of subsets of even size holds and
It is easy to see that holds for all subsets of even size exactly if holds for all subsets of even size.
The three-dimensional Ferrers diagram is fully complementary inside a (2, 2, 2, 2)-box. This can be seen easily by calculating the according images under for even sized I which are given by
There are three further Ferrers diagrams which are fully complementary inside (2, 2, 2, 2), namely , and . More generally, define the d-dimensional Ferrers diagrams
| 2.1 |
where the 2 entry is at position i. Then, the d-dimensional Ferrers diagrams which are fully complementary inside the box are exactly .
In the above definition of fully complementary, we restricted ourselves to boxes with even side lengths. The definition can be extended to any side lengths, however, as we see next, either there are no such Ferrers diagrams, or we obtain a set of Ferrers diagram which is in bijection to one where the box has only even side lengths. First, assume that there exist such that the k-th and l-th side lengths of the box are given by and , respectively, and that is a Ferrers diagram which is fully complementary inside this box. Let us regard the point whose components are 1 except for the k-th and l-th component. Then, there exists an of even size such that , where and is half of the side length of the box in the direction of i-th standard vector. Let be the set . It is immediate that is even and that which is a contradiction. Hence, there exists no fully complementary Ferrers diagram inside a box with at least two odd side lengths.
Now, let all side lengths of the box be even with the exception of one side length. Without loss of generality, we can assume that the box is a -box. For a fully complementary partition in this box, we see that a point of the form is exactly in if for all . The map
is a surjection from Ferrers diagrams inside a -box to Ferrers diagrams inside a -box. It is not difficult to see that the map commutes with for each , i.e.
Hence, maps fully complementary Ferrers diagrams inside a -box bijectively to those inside a -box.
The Generating Function of FCPs
We call a d-dimensional partition fully complementary inside a -box if its corresponding Ferrers diagram is fully complementary in this box. The fully complementary partitions inside the (2, 2, 2, 2)-box are shown next where we write in the top row and in the row below:
For and a subset , we define the map as
Again we omit the subscript and write whenever is clear from context. The next lemma rephrases the conditions of being fully complementary directly for a d-dimensional partition.
Lemma 2.2
Let be positive integers. A d-dimensional partition is fully complementary inside a -box if and only if
| 2.2 |
| 2.3 |
for all non-empty subsets of even size and for all .
Proof
Let be a fully complementary Ferrers diagram inside a -box and the corresponding d-dimensional partition. For , we have
By definition, the intersection is empty for even sized I exactly if for all . For odd sized , the intersection is empty if and only if for all . Finally, the union of all with of even size is exactly if and only if (2.3) is satisfied for all .
Remark 2.3
Let and let such that . The above Lemma implies that there exists exactly one of odd size such that . By (2.3), there exists at least one set of odd size such that . By definition, this implies where is the corresponding Ferrers diagram of . Hence, by Definition 2.1, there cannot exist another with the same properties.
Denote by the set of fully complementary partitions inside a -box. For , we define the map1 as
and the map as
It is not difficult to see that these maps are well defined. Let be the fully complementary partition inside the (4, 4, 4)-box displayed next:
The images of under the maps or , respectively, are given as follows:
As we see in a moment, it is useful to extend the definition of fully complementary partitions to “empty boxes”. In particular, we define to consist of the “empty array” in case that one is equal to 0 and all other are positive. We extend the map to these sets, where is the identity (mapping the empty array onto the empty array) if and mapping the empty array to
if and to
if . The maps allow us to prove the following recursive structure for FCPs.
Proposition 2.4
Let be a sequence of positive integers. Then, is equal to the disjoint union
| 2.4 |
where is the k-th unit vector and denotes the disjoint union.
Proof
First, we prove that the images of the are disjoint. Let be integers with and let be an element of this intersection. First, we assume that . Since , we have by definition . On the other hand, implies which is a contradiction. Now let . By definition of , we have
This implies
which contradicts (2.2). Hence, the union in (2.4) is disjoint.
Let . It is easy to see that . If , then . Hence, let us assume that . By (2.2), for all of even size. Remark 2.3 implies that there exists exactly one of odd size with which implies . Let and define as the vector whose entries are 1 except on position k, where the entry is and as the vector with and for all . Since is a d-dimensional partition, we have the following inequalities:
Since and there exists only one non-empty I with , this implies that and hence . Furthermore, we have by the above inequalities and by (2.3) since . This implies and hence for all defined as before. Denote for by the vector with all components equal to 1 except of the k-th and l-th component which are or , respectively. Since and it follows from (2.2) that and hence for all such that and there exists an . Denote by the array obtained by deleting all entries for which the k-th component of the index is either or . It is not difficult to verify that and which proves the claim.
Remark 2.5
Let . As a consequence of the above theorem, we can find the k such that easily as follows. First, restrict to its central hypercube B of size . It is easy to see that this again fully complementary inside B. As stated in the paragraph below (2.1), the restriction is equal to some . By comparing with the definition of , we obtain that it has to be .
As we see next, Theorem 1.1 is now a direct consequence of the above proposition.
Proof of Theorem 1.1
Let us denote by the left hand side of (1.4), i.e. . Denote further by , where the sum is over all where the j-th component is 0 and all the other components are positive. It is immediate that
since each of the in the sum has exactly one element, namely the “empty array”. Using Proposition 2.4, we rewrite as
By bringing all terms on one side, we obtain the assertion.
Remark 2.6
Let be given. By applying Proposition 2.4 iteratively, we see that each can be uniquely written as where is an “empty array” inside an appropriate “empty box” with dimension such that is a non-empty array. We map to the lattice path starting at and ending at whose jth step is . This yields a bijection between FCPs inside a -box and lattice paths inside the positive -dimensional orthant starting from any integer point on its d-dimensional boundary and ending at with step set such that all coordinates are positive after the first step. Below we show the construction for an FCP inside a (6, 4, 4)-box which is mapped to the lattice path from (1, 1, 0) to (3, 2, 2) with steps :
Symmetry Classes of QCPPs
(Quasi)-symmetric QCPPs
Remember that a plane partition is quarter complementary inside a -box if for all and , we have
| 3.1 |
and for exactly one of the following equations holds:
| 3.2 |
Regarded as a regular plane partition, is called symmetric if and for all . By (3.1), we see that can only be symmetric if the entries on its anti-diagonal are 0, i.e. for . Together with (3.2), this implies and hence that the only symmetric quarter complementary plane partition is
In order to obtain more interesting objects, we omit the symmetry condition on the anti-diagonal and call a quarter complementary plane partition quasi-symmetric if for all and . Denote by , the set of quarter complementary plane partitions inside a (2a, 2a, 2c)-box which are quasi-symmetric.
Proposition 3.1
Let a, c be positive integers. Then, is equal to
| 3.3 |
Proof
Let . By Proposition 2.4, is either in , or . In the first case, is obviously quasi-symmetric and for each , the partition is also quasi-symmetric. Assume . By the definition of , we have if and if . By the quasi-symmetry of , this implies for and for . Therefore, we obtain for . For and , we have
where we used the definition of and for the first and last equality and the quasi-symmetry of for the second equality. This implies . On the other hand if , it follows by the same considerations that is quasi-symmetric and hence an element of . The last case follows analogously.
By defining to consist of the “empty array” if either a or c is equal to 0, we obtain immediately the following corollary.
Corollary 3.2
The generating function for quasi-symmetric quarter complementary plane partitions is given by
Proof
Using Proposition 3.1, we obtain
We obtain the assertion by combining both sums over and factorising the expression.
Cyclically Symmetric QCPPs
A plane partition is called cyclically symmetric if a point (i, j, k) in its Ferrers diagram implies that (j, k, i) is also in its Ferrers diagram. As we see next, there is no cyclically symmetric quarter complementary plane partition. Let be a cyclically symmetric quarter complementary Ferrers diagram inside a (2a, 2a, 2a)-box. It is not difficult to see, that being quarter complementary implies that one of the points (1, 1, 2a), (1, 2a, 1) or (2a, 1, 1) has to be part of , and hence all of them since is cyclically symmetric. The set , therefore, contains the points (2a, 1, 1) and (1, 2a, 1) which is a contradiction to .
Contrary to the previous subsection, we did not find an “interesting” generalisation of cyclically symmetric to “quasi-cyclically symmetric” for which we can deduce either a result or a conjecture in the case of QCPPs.
Self- and Transpose-Complementary QCPPs
In order to study self- or transpose-complementary QCPPs, we need to specify the box we want to consider the complementation in. For a QCPP inside a (2a, 2b, 2c)-box, the possible boxes for complementation are a (2a, 2b, c)-, a (2a, b, 2c)- and an (a, 2b, 2c)-box. For symmetry reasons, it suffices to consider QCPPs which are self- or transpose-complementary inside a (2a, 2b, c)-box. We call a QCPP inside a (2a, 2b, 2c)-box self-complementary if for all and , and quasi-transpose-complementary2 if and for all with . We obtain the following enumeration results.
Proposition 3.3
The number of self-complementary QCPPs inside a (2a, 2b, 2c)-box is .
Proof
The condition implies that all entries are at most c. Together with (3.2) this implies that all entries are either 0 or c. Hence, by Proposition 2.4, is either of the form or for an appropriate QCPP . For and and , we have
i.e. is self-complementary inside a -box. On the other hand, for each self-complementary inside a -box the QCPP is self-complementary inside a (2a, 2b, 2c)-box. The case follows analogously. The assertion is now immediate by induction on .
Proposition 3.4
A QCPP inside a (2a, 2a, 2c)-box is quasi-transpose-complementary if and only if it is quasi-symmetric and self-complementary. The number of quasi-transpose-complementary QCPPs inside a (2a, 2a, 2c)-box is .
Proof
The condition together with (3.2) implies that all entries of are either 0 or c. Since is quarter complementary inside a (2a, 2a, 2c)-box, the sum over all entries must be . Hence, exactly entries are equal to c and entries are equal to 0. For exactly one of the equations or holds by (2.3). Hence, exactly half of the entries on the anti-diagonal are equal to c. For we, therefore, have exactly if , which is by (3.1) equivalent to . This implies that is quasi-symmetric and, therefore, also self-complementary. It is immediate that a quasi-symmetric, self-complementary QCPP is also quasi-transpose-complementary.
By the proof of Proposition 3.1 and Proposition 3.3 each quasi-transpose-complementary QCPP is of the form or , where is a quasi-transpose-complementary QCPP inside a -box. The assertion follows now by induction on a.
Quasi-symmetry Classes of Plane Partitions
Three Conjectures
In the previous section we introduced variations of two symmetry classes for quarter complementary plane partitions. The aim of this section is to consider these and similar symmetry classes for plane partitions. The following three conjectures were found by computer experiments. We have added the according data as well as explicit guessed enumeration formulas for small values of one of the parameters in the appendix.
Conjecture 4.1
Let us denote by the number of quasi-symmetric plane partitions inside an (a, a, c)-box. Then,
| 4.1 |
where is an irreducible polynomial in that is even, i.e. . Further the common denominator of the coefficients of is a product of “small primes”.
Conjecture 4.2
We call a plane partition inside an (a, a, 2c)-box quasi-transpose complementary of second kind (QTC2), if is transpose-complementary except along the diagonal, i.e. for all with . Then, for , the number of QTC2 plane partitions inside an (a, a, 2c)-box is given by
| 4.2 |
where is an irreducible polynomial in that is even. Further the common denominator of the coefficients of is a product of “small primes”.
Conjecture 4.3
Denote by the number of symmetric QTC2 plane partitions. Then, for ,
| 4.3 |
where is a polynomial in that is even and for a even irreducible in . Further the common denominator of the coefficients of is a product of “small primes”.
Proof of Theorem 1.2
Let be a quasi-transpose-complementary plane partition (QTCPP) inside an (n, n, c)-box. By definition, we have for each and equivalently by multiplying the above inequalities by and adding c to it, . Hence, stays a QTCPP if we replace its diagonal entries by for all . We denote the resulting QTCPP by . Denote by the number of anti-diagonal entries which are equal to and define the weight as
Since implies that c is even and , it is clear that there are many QTCPPs mapping to by the above map. Hence, the number of QTCPPs is equal to the weighted enumeration of QTCPPs whose anti-diagonal entries are at least . In the following, we present two (and a half) proofs for the weighted enumeration of these .
For odd c, each corresponds to a plane partition with entries at most for which the i-th row from top has at most positive entries. The number of these plane partitions can be found in [16, Corollary 4.1], compare also with [4, Corollary 4.1]. For even c, each corresponds to a lozenge tiling in the “top half” of an hexagon with side lengths n, n, c, n, n, c, where the bottom of the region is a zig-zag shape directly below the centre line of the hexagon, and each
lozenge at the bottom of the region is weighted by , see Fig. 3 (right) for an example. The number of these tilings is given in [4, Corollary 4.3]. The assertion follows in both cases using the explicit formulas from [4, 16].
Fig. 3.

A QTCPP inside a (5, 5, 6)-box whose anti-diagonal entries are at least 3 (left) and its corresponding lattice path configuration (right)
For a second proof of Theorem 1.2, denote by the number of QTCPPs inside an (n, n, c)-box and denote by M(R) the number of perfect matchings of a region R. We can rephrase the above observations as
where the region is defined in [4, Sect. 4, Fig. 5] and is defined in [4, Sect. 4, Fig. 10]. On the one side, we have by Ciucu’s factorization theorem for graphs with reflective symmetry [3] the identity
where denotes the number of plane partitions inside an (n, n, 2c)-box (compare for example with [3] or [4, Eq. (4.16)]). This implies the assertion for even c if we know it for odd c and vice versa using the explicit formulas for the number of (symmetric) plane partitions. Further, it is well known, that , see [5, Eq. (5.1)] or [6, Eq. (2.6)] and that , where is the number of transpose-complementary plane partitions inside an (n, n, 2c)-box (see for example [3, Sect. 6]). Combining the above and the assertion already proved above, we obtain immediately the numerical connection between SPPs and TCPPs stated in (1.5).
Finally, we present another proof using non-intersecting lattice paths. We regard as a lozenge tiling as above and draw n lattice paths ending at the top right boundary of the hexagon in the following way. The allowed steps for the paths are
and
Finally, the i-th path from left has length ; see Fig. 3 (left) for an example. By straightening the paths, we obtain non-intersecting lattice paths starting at and ending at with north-steps (0, 1) and east-steps (1, 0), see Fig. 3 (right). For odd c, each family of paths has the same weight, namely . Hence, the weighted enumeration is, therefore, by the Lindström–Gessel–Viennot Theorem equal to
| 4.4 |
For even c, we see that an anti-diagonal entry corresponds to the j-th path starting with an east-step. Define the points and which are reached from by an east-step or a north-step, respectively. By deleting the first step of each path, we obtain a family of non-intersecting lattice paths starting from either or , where the weight is given by 2 to the power of the number of times we start at . Using again the Lindström–Gessel–Viennot Theorem, we obtain for the weighted enumeration
| 4.5 |
where we used the multilinearity of the determinant in the last step. Both determinants could be evaluated by guessing the corresponding LU decomposition and using the Pfaff–Saalschütz-summation formula, see for example [17, Eq. (2,3,1,3); Appendix (III.2)]; we omit, however, the details since there is a simpler and more elegant solution as follows. First, we rewrite the determinant in (4.5) as
| 4.6 |
Then, both determinants are special cases of determinant evaluation [10, Eq. (3.13)]
by setting , and .
Acknowledgements
The author thanks Ilse Fischer and Christian Krattenthaler for helpful discussions and the reviewers for helpful comments.
Appendix A. Data from the Computer Experiments
The data presented in the appendix was obtained by generating the according objects using Mathematica; the code can be obtained on the authors webpage https://homepage.univie.ac.at/florian.schreier-aigner/data/data_generation.nb.
A.1 Quasi-symmetric Plane Partitions
The values for the number of quasi-symmetric plane partitions inside an (a, a, c)-box with and are shown in the next table.
| c \ a | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 2 | 6 | 12 | 32 | 64 | 164 |
| 2 | 3 | 20 | 69 | 400 | 1442 | 7952 |
| 3 | 4 | 50 | 272 | 3052 | 18,544 | 200,956 |
| 4 | 5 | 105 | 846 | 16,932 | 164,686 | 3,284,589 |
| 5 | 6 | 196 | 2232 | 74,868 | 1,118,080 | 38,963,092 |
| 6 | 7 | 336 | 5214 | 278,928 | 6,178,097 | 360,346,984 |
| 7 | 8 | 540 | 11,088 | 908,336 | 28,977,472 | 2,727,638,524 |
| 8 | 9 | 825 | 21,879 | 2,653,001 | 118,868,458 | 17,499,041,992 |
| 9 | 10 | 1210 | 40,612 | 7,081,776 | 435,998,528 | 97,667,820,784 |
| 10 | 11 | 1716 | 71,643 | 17,524,416 | 1,454,331,440 | 483,901,238,656 |
Using the above values, we conjecture the following formulas for for :
A.2. Quasi-transpose-Complementary Plane Partitions of Second Kind
For the number of QTC2 plane partitions inside an (a, a, c)-box with and , we have the following values:
| c \ a | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 3 | 4 | 9 | 24 | 70 | 216 |
| 2 | 5 | 9 | 42 | 224 | 1578 | 12,177 |
| 3 | 7 | 16 | 138 | 1280 | 19,157 | 314,624 |
| 4 | 9 | 25 | 363 | 5361 | 155,270 | 4,860,048 |
| 5 | 11 | 36 | 819 | 18,088 | 943,008 | 51,955,744 |
| 6 | 13 | 49 | 1652 | 52,032 | 4,606,320 | 420,545,536 |
| 7 | 15 | 64 | 3060 | 132,408 | 18,969,942 | 2,735,918,368 |
| 8 | 17 | 81 | 5301 | 305,745 | 68,084,583 | 14,918,043,569 |
| 9 | 19 | 100 | 8701 | 652,432 | 218,198,470 | 70,303,307,672 |
| 10 | 21 | 121 | 13,662 | 1,304,160 | 635,987,530 | 293,079,258,017 |
We conjecture the following explicit formulas for for :
A.3. Quasi-transpose-Complementary Symmetric Plane Partitions of Second Kind
Computer experiments yield the following values for the number of symmetric QTC2 plane partitions inside an (a, a, c)-box with and .
| c \ a | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 3 | 4 | 7 | 12 | 22 | 40 |
| 2 | 5 | 9 | 26 | 68 | 210 | 625 |
| 3 | 7 | 16 | 70 | 260 | 1265 | 5728 |
| 4 | 9 | 25 | 155 | 777 | 5642 | 36,876 |
| 5 | 11 | 36 | 301 | 1960 | 20,328 | 184,224 |
| 6 | 13 | 49 | 532 | 4368 | 62,424 | 759,708 |
| 7 | 15 | 64 | 876 | 8856 | 169,290 | 2,695,200 |
| 8 | 17 | 81 | 1365 | 16,665 | 415,635 | 8,468,889 |
| 9 | 19 | 100 | 2035 | 29,524 | 940,654 | 24,078,184 |
| 10 | 21 | 121 | 2926 | 49,764 | 1,989,130 | 62,949,289 |
For the first few values of a, we conjecture the following formulas for :
Funding
Open access funding provided by University of Vienna.
Declarations
Conflict of Interest
The author states that there is no conflict of interest
Footnotes
Formally, we have for each a different map . However, since will always be clear from the context, we do not include in the notation.
It is immediate that there are no transpose-complementary QCPPs since the condition on the anti-diagonal contradicts (2.2). Similar to quasi-symmetric, we, therefore, exclude the condition on the anti-diagonal to obtain interesting objects.
Florian Schreier-Aigner acknowledges the financial support from the Austrian Science Foundation FWF, grant https://dx.doi.org/10.55776/J4387, https://dx.doi.org/10.55776/P34931, and https://dx.doi.org/10.55776/P36863.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.A. Amanov and D. Yeliussizov. MacMahon’s statistics on higher-dimensional partitions. Forum Math. Sigma, 11:e63, 23, 2023. 10.1017/fms.2023.61.
-
2.A. O. L. Atkin, P. Bratley, I. G. Macdonald, and J. K. S. McKay. Some computations for
-dimensional partitions. Proc. Cambridge Philos. Soc., 63:1097–1100, 1967. 10.1017/s0305004100042171. [Google Scholar] - 3.M. Ciucu. Enumeration of perfect matchings in graphs with reflective symmetry. J. Combin. Theory Ser. A, 77(1):67–97, 1997. 10.1006/jcta.1996.2725. [Google Scholar]
- 4.M. Ciucu and I. Fischer. Proof of two conjectures of Ciucu and Krattenthaler on the enumeration of lozenge tilings of hexagons with cut off corners. J. Combin. Theory Ser. A, 133:228–250, 2015. 10.1016/j.jcta.2015.02.008. [Google Scholar]
- 5.M. Ciucu and C. Krattenthaler. A factorization theorem for classical group characters, with applications to plane partitions and rhombus tilings. In I. S. Kotsireas and E. V. Zima, editors, Advances in combinatorial mathematics: Proceedings of the Waterloo Workshop in Computer Algebra 2008, pages 39–60. Springer, Berlin, 2010. 10.1007/978-3-642-03562-3.
- 6.M. Ciucu and C. Krattenthaler. A factorization theorem for lozenge tilings of a hexagon with triangular holes. Trans. Amer. Math. Soc., 369(5):3655–3672, 2017. 10.1090/tran/7047. [Google Scholar]
- 7.G. David and C. Tomei. The problem of the calissons. Amer. Math. Monthly, 96(5):429–431, 1989. 10.2307/2325150. [Google Scholar]
- 8.D. E. Knuth. A note on solid partitions. Math. Comp., 24:955–961, 1970. 10.2307/2004628. [Google Scholar]
-
9.C. Koutschan, M. Kauers, and D. Zeilberger. Proof of George Andrews’s and David Robbins’s
-TSPP conjecture. Proc. Natl. Acad. Sci. USA, 108(6):2196–2199, 2011. 10.1073/pnas.1019186108. [Google Scholar] - 10.C. Krattenthaler. Advanced determinant calculus. Sém. Lothar. Combin., 42:Art. B 42q, 67 pp., 1999.
- 11.C. Krattenthaler. The mathematical legacy of Richard P. Stanley, chapter Plane partitions in the work of Richard Stanley and his school, pages 231–261. Amer. Math. Soc., Providence, RI, 2016. 10.1090/mbk/100.
- 12.P. A. MacMahon. Memoir on the theory of the partition of numbers, I. Lond. Phil. Trans. (A), 187:619–673, 1897. [Google Scholar]
- 13.P. A. MacMahon. Partitions of numbers whose graphs possess symmetry. Trans. Cambridge Philos. Soc., 17:149–170, 1899. [Google Scholar]
- 14.P. A. MacMahon. Combinatory Analysis, vol. 2. Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960.
- 15.W. H. Mills, D. P. Robbins, and H. Rumsey Jr. Self-complementary totally symmetric plane partitions. J. Combin. Theory Ser. A, 42(2):277–292, 1986. 10.1016/0097-3165(86)90098-1. [Google Scholar]
- 16.R. A. Proctor. Odd symplectic groups. Invent. Math., 92(2):307–332, 1988. 10.1007/BF01404455. [Google Scholar]
- 17.L. J. Slater. Generalized hypergeometric functions. Cambridge University Press, Cambridge, 1966. [Google Scholar]
- 18.R. P. Stanley. A baker’s dozen of conjectures concerning plane partitions. In Combinatoire énumérative, volume 1234 of Lecture Notes in Math., pages 285–293. Springer, Berlin, 1986. 10.1007/BFb0072521.
- 19.R. P. Stanley. Symmetries of plane partitions. J. Combin. Theory Ser. A, 43(1):103–113, 1986. Erratum 44:310, 1987. 10.1016/0097-3165(86)90028-2.
