Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Sep;366:365–385. doi: 10.1113/jphysiol.1985.sp015803

Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart.

Y Kurachi
PMCID: PMC1193038  PMID: 2414434

Abstract

The activation kinetics of the inward-rectifier K+ channel were studied by single-channel recording in isolated single cells of the guinea-pig ventricle with two different extracellular concentrations of K+ ([K+]o 150 and 75 mM). When voltage pulses were applied from a holding potential more positive than the potassium equilibrium potential (EK), to potentials more negative than EK, the probability of the channel being in the open state (Po) increased with time after the onset of the command pulse. The ensemble averaged current increased in its initial phase (activation). When the command potential was more negative than EK-40 mV, the current decreased after rapid activation due to the inactivation of the channel. The averaged current could be divided into an instantaneous and a time-dependent activation component; the latter was fitted by a single exponential function. The time constant of the time-dependent component became shorter, at more negative command potentials. When compared at the same command potential, the instantaneous component became smaller, as the patch membrane was held at more depolarized potential. This indicates that the steady-state Po of the channel decreases with depolarization at potentials more positive than EK. The Po of the activation gate of the channel was estimated by dividing the steady-state Po of the channel by the Po of the inactivation gate at each potential. It was about 0.1 at EK + 20 mV and increased sigmoidally with hyperpolarization. At potentials more negative than EK-40 mV, the Po of the activation gate saturated and was almost 1. The single-channel analysis and the noise analysis of the steady-state current fluctuations revealed that the activation gate of the channel follows first-order kinetics between the open and closed states. The activation kinetics shifted along the voltage axis in a similar way as EK when different [K+]o were used. Thus, the activation of the channel depends not only on the membrane potential but also on EK, when [K+]o is changed. The macroscopic current flowing through the inward-rectifier K+ channel during the activation process was calculated, assuming that the elementary conductance of the channel is not voltage dependent. The calculated current showed a prominent inward-rectifying property in the steady state and formed a negative conductance region at potentials positive to EK. It was, therefore, concluded that the properties of the inward-rectifier time-independent background K+ current (iK1) in the whole-cell current records (Noble, 1979) mainly depend on the activation kinetics of the inward-rectifier K+ channel in the cardiac myocyte membrane.

Full text

PDF
365

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beeler G. W., Jr, Reuter H. Voltage clamp experiments on ventricular myocarial fibres. J Physiol. 1970 Mar;207(1):165–190. doi: 10.1113/jphysiol.1970.sp009055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cleemann L., Morad M. Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation. J Physiol. 1979 Jan;286:113–143. doi: 10.1113/jphysiol.1979.sp012609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DeCoursey T. E., Dempster J., Hutter O. F. Inward rectifier current noise in frog skeletal muscle. J Physiol. 1984 Apr;349:299–327. doi: 10.1113/jphysiol.1984.sp015158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fukushima Y. Blocking kinetics of the anomalous potassium rectifier of tunicate egg studied by single channel recording. J Physiol. 1982 Oct;331:311–331. doi: 10.1113/jphysiol.1982.sp014374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gunning R. Kinetics of inward rectifier gating in the eggs of the marine polychaete, Neanthes arenaceodentata. J Physiol. 1983 Sep;342:437–451. doi: 10.1113/jphysiol.1983.sp014861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hagiwara S., Miyazaki S., Rosenthal N. P. Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol. 1976 Jun;67(6):621–638. doi: 10.1085/jgp.67.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hagiwara S., Ohmori H. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J Physiol. 1982 Oct;331:231–252. doi: 10.1113/jphysiol.1982.sp014371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hagiwara S., Takahashi K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol. 1974;18(1):61–80. doi: 10.1007/BF01870103. [DOI] [PubMed] [Google Scholar]
  9. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  10. Hestrin S. The interaction of potassium with the activation of anomalous rectification in frog muscle membrane. J Physiol. 1981 Aug;317:497–508. doi: 10.1113/jphysiol.1981.sp013839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Isenberg G. Cardiac Purkinje fibers: cesium as a tool to block inward rectifying potassium currents. Pflugers Arch. 1976 Sep 30;365(2-3):99–106. doi: 10.1007/BF01067006. [DOI] [PubMed] [Google Scholar]
  12. Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium". Pflugers Arch. 1982 Oct;395(1):6–18. doi: 10.1007/BF00584963. [DOI] [PubMed] [Google Scholar]
  13. Kameyama M., Kiyosue T., Soejima M. Single channel analysis of the inward rectifier K current in the rabbit ventricular cells. Jpn J Physiol. 1983;33(6):1039–1056. doi: 10.2170/jjphysiol.33.1039. [DOI] [PubMed] [Google Scholar]
  14. Kurachi Y. The effects of intracellular protons on the electrical activity of single ventricular cells. Pflugers Arch. 1982 Sep;394(3):264–270. doi: 10.1007/BF00589102. [DOI] [PubMed] [Google Scholar]
  15. Leech C. A., Stanfield P. R. Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. J Physiol. 1981;319:295–309. doi: 10.1113/jphysiol.1981.sp013909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McAllister R. E., Noble D. The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J Physiol. 1966 Oct;186(3):632–662. doi: 10.1113/jphysiol.1966.sp008060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McDonald T. F., Trautwein W. The potassium current underlying delayed rectification in cat ventricular muscle. J Physiol. 1978 Jan;274:217–246. doi: 10.1113/jphysiol.1978.sp012144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Noble D., Tsien R. W. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol. 1968 Mar;195(1):185–214. doi: 10.1113/jphysiol.1968.sp008454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ohmori H. Inactivation kinetics and steady-state current noise in the anomalous rectifier of tunicate egg cell membranes. J Physiol. 1978 Aug;281:77–99. doi: 10.1113/jphysiol.1978.sp012410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rougier O., Vassort G., Stämpfli R. Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(2):91–108. doi: 10.1007/BF00362729. [DOI] [PubMed] [Google Scholar]
  21. Sakmann B., Trube G. Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane. J Physiol. 1984 Feb;347:659–683. doi: 10.1113/jphysiol.1984.sp015089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vereecke J., Isenberg G., Carmeliet E. K efflux through inward rectifying K channels in voltage clamped Purkinje fibers. Pflugers Arch. 1980 Apr;384(3):207–217. doi: 10.1007/BF00584555. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES