Abstract
To test whether the properties of subsynaptic acetylcholine (ACh) receptors in skeletal muscle fibre are influenced by the type of the innervating neurone some pharmacological properties of ACh receptor in normal end-plates and in denervated end-plates reinnervated by the vagus nerve in the frog were compared. Blockade of nerve-evoked synaptic currents by 200 microM-hexamethonium was stronger at vagus-reinnervated than at normal end-plates. Blockade at both types of junctions was voltage dependent. The effect of hexamethonium on equilibrium currents induced by bath-applied ACh and carbamylcholine was similar at the two types of junctions. At both normal and vagus-reinnervated junctions, decamethonium had similar partial agonist properties. Following a step in membrane potential, the relaxations of ACh-induced conductance changes at the two types of junctions were affected in a similar fashion by hexamethonium: hyperpolarization first produced a fast decrease and then a slow exponential increase in conductance. Upon depolarization, a fast increase was followed by an exponential decline to its original level. The time constant of the slow relaxation was slightly prolonged compared to control. These findings are consistent with a fast blocking action of open channels by hexamethonium. The effectiveness of hexamethonium in blocking end-plate currents was reduced in the presence of (+)-tubocurarine, indicating that hexamethonium has a competitive blocking action on the receptors. These results do not indicate that the pharmacological properties of the ACh receptors are changed after an end-plate is reinnervated by a preganglionic neurone. The differential effect of hexamethonium on transmission at normal and vagus-reinnervated end-plates is discussed as a consequence of different transmitter release characteristics at the two types of junctions.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. R. Acetylcholine receptor kinetics. J Membr Biol. 1981 Feb 28;58(3):161–174. doi: 10.1007/BF01870902. [DOI] [PubMed] [Google Scholar]
- Adams P. R. Drug blockade of open end-plate channels. J Physiol. 1976 Sep;260(3):531–552. doi: 10.1113/jphysiol.1976.sp011530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams P. R. Relaxation experiments using bath-applied suberyldicholine. J Physiol. 1977 Jun;268(2):271–289. doi: 10.1113/jphysiol.1977.sp011857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams P. R., Sakmann B. A comparison of current-voltage relations for full and partial agonists. J Physiol. 1978 Oct;283:621–644. doi: 10.1113/jphysiol.1978.sp012523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams P. R., Sakmann B. Decamethonium both opens and blocks endplate channels. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2994–2998. doi: 10.1073/pnas.75.6.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams P. R. Voltage jump analysis of procaine action at frog end-plate. J Physiol. 1977 Jun;268(2):291–318. doi: 10.1113/jphysiol.1977.sp011858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ascher P., Large W. A., Rang H. P. Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. J Physiol. 1979 Oct;295:139–170. doi: 10.1113/jphysiol.1979.sp012958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BIRKS R., KATZ B., MILEDI R. Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J Physiol. 1960 Jan;150:145–168. doi: 10.1113/jphysiol.1960.sp006379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackman J. G., Gauldie R. W., Milne R. J. Interaction of competitive antagonists: the anti-curare action of hexamethonium and other antagonists at the skeletal neuromuscular junction. Br J Pharmacol. 1975 May;54(1):91–100. doi: 10.1111/j.1476-5381.1975.tb07414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackman J. G., Gauldie R. W., Milne R. J. Interaction of competitive antagonists: the anti-curare action of hexamethonium and other antagonists at the skeletal neuromuscular junction. Br J Pharmacol. 1975 May;54(1):91–100. doi: 10.1111/j.1476-5381.1975.tb07414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breitschmid P., Brenner H. R. Channel gating at frog neuromuscular junctions formed by different cholinergic neurones. J Physiol. 1981 Mar;312:237–252. doi: 10.1113/jphysiol.1981.sp013626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner H. R., Meier T., Widmer B. Early action of nerve determines motor endplate differentiation in rat muscle. Nature. 1983 Oct 6;305(5934):536–537. doi: 10.1038/305536a0. [DOI] [PubMed] [Google Scholar]
- Cohen M. W., Weldon P. R. Localization of acetylcholine receptors and synaptic ultrastructure at nerve-muscle contacts in culture: dependence on nerve type. J Cell Biol. 1980 Aug;86(2):388–401. doi: 10.1083/jcb.86.2.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colquhoun D., Dreyer F., Sheridan R. E. The actions of tubocurarine at the frog neuromuscular junction. J Physiol. 1979 Aug;293:247–284. doi: 10.1113/jphysiol.1979.sp012888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyer F., Peper K. Iontophoretic application of acetylcholine: advantages of high resistance micropipettes in connection with an electronic current pump. Pflugers Arch. 1974 Apr 22;348(3):263–272. doi: 10.1007/BF00587417. [DOI] [PubMed] [Google Scholar]
- Elsberg C. A. EXPERIMENTS ON MOTOR NERVE REGENERATION AND THE DIRECT NEUROTIZATION OF PARALYZED MUSCLES BY THEIR OWN AND BY FOREIGN NERVES. Science. 1917 Mar 30;45(1161):318–320. doi: 10.1126/science.45.1161.318. [DOI] [PubMed] [Google Scholar]
- Frank E., Fischbach G. D. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J Cell Biol. 1979 Oct;83(1):143–158. doi: 10.1083/jcb.83.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandiha A., Green A. L., Marshall I. G. Some effects of hexamethonium and tetraethylammonium at a neuromuscular junction of the chicken. Eur J Pharmacol. 1972 May;18(2):174–182. doi: 10.1016/0014-2999(72)90239-7. [DOI] [PubMed] [Google Scholar]
- Gordon T., Vrbová G., Wilcock G. The influence of innervation on differentiating tonic and twitch muscle fibres of the chicken. J Physiol. 1981;319:261–269. doi: 10.1113/jphysiol.1981.sp013906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinnell A. D., Rheuben M. B. The physiology, pharmacology, and trophic effectiveness of synapses formed by autonomic preganglionic nerves on frog skeletal muscle. J Physiol. 1979 Apr;289:219–240. doi: 10.1113/jphysiol.1979.sp012734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JENKINSON D. H. The antagonism between tubocurarine and substances which depolarize the motor end-plate. J Physiol. 1960 Jul;152:309–324. doi: 10.1113/jphysiol.1960.sp006489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landmesser L. Contractile and electrical responses of vagus-innervated frog sartorius muscles. J Physiol. 1971 Mar;213(3):707–725. doi: 10.1113/jphysiol.1971.sp009410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landmesser L. Pharmacological properties, cholinesterase activity and anatomy of nerve-muscle junctions in vagus-innervated frog sartorius. J Physiol. 1972 Jan;220(1):243–256. doi: 10.1113/jphysiol.1972.sp009704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lømo T., Slater C. R. Acetylcholine sensitivity of developing ectopic nerve-muscle junctions in adult rat soleus muscles. J Physiol. 1980 Jun;303:173–189. doi: 10.1113/jphysiol.1980.sp013279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milne R. J., Byrne J. H. Effects of hexamethonium and decamethonium on end-plate current parameters. Mol Pharmacol. 1981 Mar;19(2):276–281. [PubMed] [Google Scholar]
- Nastuk W. L., Parsons R. L. Factors in the inactivation of postjunctional membrane receptors of frog skeletal muscle. J Gen Physiol. 1970 Aug;56(2):218–249. doi: 10.1085/jgp.56.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E., Sakmann B. Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibres. J Physiol. 1976 Jul;258(3):705–729. doi: 10.1113/jphysiol.1976.sp011442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E., Sakmann B. Voltage-dependence of drug-induced conductance in frog neuromuscular junction. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2140–2144. doi: 10.1073/pnas.72.6.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E., Steinbach J. H. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol. 1978 Apr;277:153–176. doi: 10.1113/jphysiol.1978.sp012267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rang H. P., Rylett R. J. The interaction between hexamethonium and tubocurarine on the rat neuromuscular junction. Br J Pharmacol. 1984 Mar;81(3):519–531. doi: 10.1111/j.1476-5381.1984.tb10105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuetze S. M., Vicini S. Neonatal denervation inhibits the normal postnatal decrease in endplate channel open time. J Neurosci. 1984 Sep;4(9):2297–2302. doi: 10.1523/JNEUROSCI.04-09-02297.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber M., Changeux J. P. Binding of Naja nigricollis (3H)alpha-toxin to membrane fragments from Electrophorus and Torpedo electric organs. II. Effect of cholinergic agonists and antagonists on the binding of the tritiated alpha-neurotoxin. Mol Pharmacol. 1974 Jan;10(1):15–34. [PubMed] [Google Scholar]
