Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Oct;367:503–529. doi: 10.1113/jphysiol.1985.sp015837

Cholinergic agonists suppress a potassium current in freshly dissociated smooth muscle cells of the toad.

S M Sims, J J Singer, J V Walsh Jr
PMCID: PMC1193076  PMID: 2414443

Abstract

Single micro-electrode voltage-clamp and current-clamp techniques were used to study cholinergic responses in single freshly isolated gastric smooth muscle cells from the toad Bufo marinus. Acetylcholine (ACh) or muscarine caused membrane depolarization, which sometimes gave rise to action potentials and contractions. The agonist-induced depolarization is due to the suppression of a voltage-dependent K+ conductance, a conclusion based on the following observations. Depolarization was accompanied by an apparent membrane conductance decrease, seen as the increased size of voltage deflexions in response to constant current pulses. The conductance decrease was confirmed under voltage clamp, where current deflexions in response to constant voltage jumps were smaller in the presence of cholinergic agonists. Muscarine induced net inward currents at potentials positive to the K+ equilibrium potential (EK), and net outward currents at potentials negative to EK. In experiments where external K+ concentration ([K+]o) ranged from 20 to 90 mM the reversal potentials shifted 58 mV positive per tenfold elevation of [K+]o, as expected for a K+ current. The steady-state current-voltage relationship revealed that the K+ current inhibited by muscarine was larger at more positive potentials than expected from driving force considerations alone. Therefore, the underlying conductance suppressed by cholinergic agonists was voltage dependent, with almost complete deactivation at potentials more negative than approximately -70 mV and exhibiting a sigmoidal activation curve upon depolarization. The deactivation of this voltage-dependent K+ conductance caused slow current relaxations to occur in response to hyperpolarizing voltage commands from depolarized holding potentials. In experiments where [K+]o ranged from 3 to 30 mM, these current relaxations reversed direction at potentials near EK and the reversal potential shifted 52 mV positive per tenfold elevation of [K+]o, indicating that K ions carry most of the charge. The current relaxations that occurred in response to hyperpolarizing voltage commands were suppressed by ACh, muscarine and oxotremorine. The effects of muscarine persisted in nominally Ca2+-free solutions containing Mn2+. Ba2+ mimicked the effects of muscarinic agonists. Thus, isolated smooth muscle cells exhibit a K+ current resembling the M-current of sympathetic and other neurones, which is reversibly suppressed by cholinergic agonists. The existence of a cholinergic K+ conductance decrease is of interest because it has not previously been demonstrated in smooth muscle.

Full text

PDF
503

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R., Brown D. A., Constanti A. M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol. 1982 Sep;330:537–572. doi: 10.1113/jphysiol.1982.sp014357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams P. R., Brown D. A., Constanti A. Pharmacological inhibition of the M-current. J Physiol. 1982 Nov;332:223–262. doi: 10.1113/jphysiol.1982.sp014411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adams P. R., Brown D. A., Jones S. W. Substance P inhibits the M-current in bullfrog sympathetic neurones. Br J Pharmacol. 1983 Jun;79(2):330–333. doi: 10.1111/j.1476-5381.1983.tb11004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akasu T., Gallagher J. P., Koketsu K., Shinnick-Gallagher P. Slow excitatory post-synaptic currents in bull-frog sympathetic neurones. J Physiol. 1984 Jun;351:583–593. doi: 10.1113/jphysiol.1984.sp015264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bagby R. M., Young A. M., Dotson R. S., Fisher B. A., McKinnon K. Contraction of single smooth muscle cells from Bufo marinus stomach. Nature. 1971 Dec 10;234(5328):351–352. doi: 10.1038/234351a0. [DOI] [PubMed] [Google Scholar]
  6. Bitar K. N., Zfass A. M., Makhlouf G. M. Interaction of acetylcholine and cholecystokinin with dispersed smooth muscle cells. Am J Physiol. 1979 Aug;237(2):E172–E176. doi: 10.1152/ajpendo.1979.237.2.E172. [DOI] [PubMed] [Google Scholar]
  7. Bolton T. B. Cholinergic mechanisms in smooth muscle. Br Med Bull. 1979 Sep;35(3):275–283. doi: 10.1093/oxfordjournals.bmb.a071589. [DOI] [PubMed] [Google Scholar]
  8. Bolton T. B. Effects of stimulating the acetylcholine receptor on the current-voltage relationships of the smooth muscle membrane studied by voltage clamp of potential recorded by micro-electrode. J Physiol. 1975 Aug;250(1):175–202. doi: 10.1113/jphysiol.1975.sp011048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bolton T. B., Kitamura K. Evidence that ionic channels associated with the muscarinic receptor of smooth muscle may admit calcium. Br J Pharmacol. 1983 Feb;78(2):405–416. doi: 10.1111/j.1476-5381.1983.tb09405.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Boutilier R. G., Randall D. J., Shelton G., Toews D. P. Acid-base relationships in the blood of the toad, Bufo marinus. I. The effects of environmental CO2. J Exp Biol. 1979 Oct;82:331–344. doi: 10.1242/jeb.82.1.331. [DOI] [PubMed] [Google Scholar]
  11. Brown D. A., Adams P. R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature. 1980 Feb 14;283(5748):673–676. doi: 10.1038/283673a0. [DOI] [PubMed] [Google Scholar]
  12. Campbell G. The autonomic innervation of the stomach of a toad (Bufo marinus). Comp Biochem Physiol. 1969 Dec 1;31(5):693–706. doi: 10.1016/0010-406x(69)92069-6. [DOI] [PubMed] [Google Scholar]
  13. Cole A. E., Nicoll R. A. Characterization of a slow cholinergic post-synaptic potential recorded in vitro from rat hippocampal pyramidal cells. J Physiol. 1984 Jul;352:173–188. doi: 10.1113/jphysiol.1984.sp015285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Constanti A., Brown D. A. M-Currents in voltage-clamped mammalian sympathetic neurones. Neurosci Lett. 1981 Jul 17;24(3):289–294. doi: 10.1016/0304-3940(81)90173-7. [DOI] [PubMed] [Google Scholar]
  15. Constanti A., Galvan M. M-current in voltage-clamped olfactory cortex neurones. Neurosci Lett. 1983 Aug 19;39(1):65–70. doi: 10.1016/0304-3940(83)90166-0. [DOI] [PubMed] [Google Scholar]
  16. DURBIN R. P., JENKINSON D. H. The effect of carbachol on the permeability of depolarized smooth muscle to inorganic ions. J Physiol. 1961 Jun;157:74–89. doi: 10.1113/jphysiol.1961.sp006706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dingledine R. N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells. J Physiol. 1983 Oct;343:385–405. doi: 10.1113/jphysiol.1983.sp014899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fay F. S., Hoffmann R., Leclair S., Merriam P. Preparation of individual smooth muscle cells from the stomach of Bufo marinus. Methods Enzymol. 1982;85(Pt B):284–292. doi: 10.1016/0076-6879(82)85027-1. [DOI] [PubMed] [Google Scholar]
  19. Fay F. S., Singer J. J. Characteristics of response of isolated smooth muscle cells to cholinergic drugs. Am J Physiol. 1977 Mar;232(3):C144–C154. doi: 10.1152/ajpcell.1977.232.3.C144. [DOI] [PubMed] [Google Scholar]
  20. Freschi J. E. Membrane currents of cultured rat sympathetic neurons under voltage clamp. J Neurophysiol. 1983 Dec;50(6):1460–1478. doi: 10.1152/jn.1983.50.6.1460. [DOI] [PubMed] [Google Scholar]
  21. Halliwell J. V., Adams P. R. Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res. 1982 Oct 28;250(1):71–92. doi: 10.1016/0006-8993(82)90954-4. [DOI] [PubMed] [Google Scholar]
  22. Hashiguchi T., Kobayashi H., Tosaka T., Libet B. Two muscarinic depolarizing mechanisms in mammalian sympathetic neurons. Brain Res. 1982 Jun 24;242(2):378–382. doi: 10.1016/0006-8993(82)90329-8. [DOI] [PubMed] [Google Scholar]
  23. Honeyman T., Merriam P., Fay F. S. The effects of isoproterenol on adenosine cyclic 3', 5'- monophosphate and contractility in isolated smooth muscle cells. Mol Pharmacol. 1978 Jan;14(1):86–98. [PubMed] [Google Scholar]
  24. Katayama Y., Nishi S. Voltage-clamp analysis of peptidergic slow depolarizations in bullfrog sympathetic ganglion cells. J Physiol. 1982 Dec;333:305–313. doi: 10.1113/jphysiol.1982.sp014455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kobayashi H., Libet B. Actions of noradrenaline and acetylcholine on sympathetic ganglion cells. J Physiol. 1970 Jun;208(2):353–372. doi: 10.1113/jphysiol.1970.sp009125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kuba K., Koketsu K. Analysis of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells. Jpn J Physiol. 1976;26(6):651–669. doi: 10.2170/jjphysiol.26.651. [DOI] [PubMed] [Google Scholar]
  27. Kuffler S. W., Sejnowski T. J. Peptidergic and muscarinic excitation at amphibian sympathetic synapses. J Physiol. 1983 Aug;341:257–278. doi: 10.1113/jphysiol.1983.sp014805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morita K., North R. A., Tokimasa T. Muscarinic agonists inactivate potassium conductance of guinea-pig myenteric neurones. J Physiol. 1982 Dec;333:125–139. doi: 10.1113/jphysiol.1982.sp014443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Niel J. P., Bywater R. A., Taylor G. S. Effect of substance P on non-cholinergic fast and slow post-stimulus depolarization in the guinea-pig ileum. J Auton Nerv Syst. 1983 Dec;9(4):573–584. doi: 10.1016/0165-1838(83)90114-5. [DOI] [PubMed] [Google Scholar]
  30. North R. A., Tokimasa T. Depression of calcium-dependent potassium conductance of guinea-pig myenteric neurones by muscarinic agonists. J Physiol. 1983 Sep;342:253–266. doi: 10.1113/jphysiol.1983.sp014849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nowak L. M., Macdonald R. L. Muscarine-sensitive voltage-dependent potassium current in cultured murine spinal cord neurons. Neurosci Lett. 1983 Jan 31;35(1):85–91. doi: 10.1016/0304-3940(83)90531-1. [DOI] [PubMed] [Google Scholar]
  32. Pennefather P., Lancaster B., Adams P. R., Nicoll R. A. Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc Natl Acad Sci U S A. 1985 May;82(9):3040–3044. doi: 10.1073/pnas.82.9.3040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Purves R. D. Muscarinic excitation: a microelectrophoretic study on cultured smooth muscle cells. Br J Pharmacol. 1974 Sep;52(1):77–86. doi: 10.1111/j.1476-5381.1974.tb09689.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Scheid C. R., Fay F. S. Control of ion distribution in isolated smooth muscle cells. I. Potassium. J Gen Physiol. 1980 Feb;75(2):163–182. doi: 10.1085/jgp.75.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Seidel E. R., Johnson L. R. Contraction and [3H]QNB binding in collagenase isolated fundic smooth muscle cells. Am J Physiol. 1983 Aug;245(2):G270–G276. doi: 10.1152/ajpgi.1983.245.2.G270. [DOI] [PubMed] [Google Scholar]
  36. Shuba M. F. The mechanism of the excitatory action of catecholamines and histamine on the smooth muscle of guinea-pig ureter. J Physiol. 1977 Jan;264(3):853–864. doi: 10.1113/jphysiol.1977.sp011698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sinback C. N., Shain W. Chemosensitivity of single smooth muscle cells to acetylcholine, noradrenaline, and histamine in vitro. J Cell Physiol. 1980 Feb;102(2):99–112. doi: 10.1002/jcp.1041020202. [DOI] [PubMed] [Google Scholar]
  38. Singer J. J., Fay F. S. Detection of contraction of isolated smooth muscle cells in suspension. Am J Physiol. 1977 Mar;232(3):C138–C143. doi: 10.1152/ajpcell.1977.232.3.C138. [DOI] [PubMed] [Google Scholar]
  39. Singer J. J., Walsh J. V., Jr Rectifying properties of the membrane of single freshly isolated smooth muscle cells. Am J Physiol. 1980 Nov;239(5):C175–C181. doi: 10.1152/ajpcell.1980.239.5.C175. [DOI] [PubMed] [Google Scholar]
  40. Singer J. J., Walsh J. V. Large conductance ca-activated k channels in smooth muscle cell membrane: reduction in unitary currents due to internal na ions. Biophys J. 1984 Jan;45(1):68–70. doi: 10.1016/s0006-3495(84)84112-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Suzuki H. Effects of endogenous and exogenous noradrenaline on the smooth muscle of guinea-pig mesenteric vein. J Physiol. 1981 Dec;321:495–512. doi: 10.1113/jphysiol.1981.sp013999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tsai C. S., Ochillo R. F. Preliminary pharmacological characterization of the isolated circular strips of gastric muscularis muscle of Bufo marinus: a new preparation. J Pharmacol Methods. 1983 Aug;10(1):45–53. doi: 10.1016/0160-5402(83)90013-x. [DOI] [PubMed] [Google Scholar]
  43. Walsh J. V., Jr, Singer J. J. Ca++-activated K+ channels in vertebrate smooth muscle cells. Cell Calcium. 1983 Dec;4(5-6):321–330. doi: 10.1016/0143-4160(83)90011-8. [DOI] [PubMed] [Google Scholar]
  44. Walsh J. V., Jr, Singer J. J. Calcium action potentials in single freshly isolated smooth muscle cells. Am J Physiol. 1980 Nov;239(5):C162–C174. doi: 10.1152/ajpcell.1980.239.5.C162. [DOI] [PubMed] [Google Scholar]
  45. Walsh J. V., Jr, Singer J. J. Penetration-induced hyperpolarization as evidence for Ca2+ activation of K+ conductance in isolated smooth muscle cells. Am J Physiol. 1980 Nov;239(5):C182–C189. doi: 10.1152/ajpcell.1980.239.5.C182. [DOI] [PubMed] [Google Scholar]
  46. Walsh J. V., Jr, Singer J. J. Voltage clamp of single freshly dissociated smooth muscle cells: current-voltage relationships for three currents. Pflugers Arch. 1981 May;390(2):207–210. doi: 10.1007/BF00590209. [DOI] [PubMed] [Google Scholar]
  47. Weight F. F., Votava J. Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance. Science. 1970 Nov 13;170(3959):755–758. doi: 10.1126/science.170.3959.755. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES