Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Jul;352:31–48. doi: 10.1113/jphysiol.1984.sp015276

Factors affecting proximal tubular acidification of non-bicarbonate buffer in the rat.

C Amorena, D T Fernandes, G Malnic
PMCID: PMC1193196  PMID: 6086911

Abstract

The effect of peritubular PCO2 and pH changes within the physiological range on proximal tubular acidification of non-bicarbonate (phosphate) buffer was evaluated with and without carbonic anhydrase inhibition by stopped-flow microperfusion and Sb micro-electrode techniques. Luminal steady-state pH was reduced from 6.69 to 6.37 and H ion fluxes (JH+) increased from 0.63 to 1.57 nmol cm-2 s-1 by increasing capillary CO2 from 0 to 9.6% at pH 7.2. After acetazolamide a marked, although attenuated, effect of CO2 on acidification was still observed; JH+ increased from 0.088 nmol cm-2 s-1 at 0% CO2 to 0.78 at 9.6% CO2. Most of this effect can be explained by titration of luminal buffer by CO2, uncatalysed CO2 hydration and H2CO3 recirculation. An increase in capillary CO2 reduced acidification half-times (t/2), which, according to an analogue circuit model, may be due to increased H ion access to the pump. Peritubular pH changes at 0% CO2 also modified tubular acidification, increasing JH+ from 0.73 nmol cm-2 s-1 at pH 7.6 to 0.99 at pH 7.0. After acetazolamide, JH+ still increased from 0.11 nmol cm-2 s-1 at pH 7.6 to 0.57 at pH 7.0. In conclusion, both peritubular CO2 changes at constant pH and pH changes at 0% CO2 were effective to modify JH+, in the presence and absence of carbonic anhydrase activity. In the studied range, capillary CO2 induced larger changes in JH+ than pH. The data show substrate (H ion) is a limiting factor for tubular H ion secretion.

Full text

PDF
31

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpern R. J., Cogan M. G., Rector F. C., Jr Effect of luminal bicarbonate concentration on proximal acidification in the rat. Am J Physiol. 1982 Jul;243(1):F53–F59. doi: 10.1152/ajprenal.1982.243.1.F53. [DOI] [PubMed] [Google Scholar]
  2. Amorena C., Malnic G. Peritubular buffering power and luminal acidification in proximal convoluted tubules of the rat. Pflugers Arch. 1983 Sep;398(4):331–336. doi: 10.1007/BF00657243. [DOI] [PubMed] [Google Scholar]
  3. Cassola A. C., Giebisch G., Malnic G. Mechansims and components of renal tubular acidification. J Physiol. 1977 Jun;267(3):601–624. doi: 10.1113/jphysiol.1977.sp011828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cassola A. C., Malnic G. Phosphate transfer and tubular pH during renal stopped flow microperfusion experiments in the rat. Pflugers Arch. 1977 Jan 17;367(3):249–255. doi: 10.1007/BF00581362. [DOI] [PubMed] [Google Scholar]
  5. Chan Y. L., Biagi B., Giebisch G. Control mechanisms of bicarbonate transport across the rat proximal convoluted tubule. Am J Physiol. 1982 May;242(5):F532–F543. doi: 10.1152/ajprenal.1982.242.5.F532. [DOI] [PubMed] [Google Scholar]
  6. Chan Y. L., Malnic G., Giebisch G. Passive driving forces of proximal tubular fluid and bicarbonate transport: gradient dependence of H+ secretion. Am J Physiol. 1983 Nov;245(5 Pt 1):F622–F633. doi: 10.1152/ajprenal.1983.245.5.F622. [DOI] [PubMed] [Google Scholar]
  7. Cogan M. G., Maddox D. A., Warnock D. G., Lin E. T., Rector F. C., Jr Effect of acetazolamide on bicarbonate reabsorption in the proximal tubule of the rat. Am J Physiol. 1979 Dec;237(6):F447–F454. doi: 10.1152/ajprenal.1979.237.6.F447. [DOI] [PubMed] [Google Scholar]
  8. Cohen L. H., Steinmetz P. R. Control of active proton transport in turtle urinary bladder by cell pH. J Gen Physiol. 1980 Sep;76(3):381–393. doi: 10.1085/jgp.76.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DuBose T. D., Jr, Pucacco L. R., Seldin D. W., Carter N. W. Direct determination of PCO2 in the rat renal cortex. J Clin Invest. 1978 Aug;62(2):338–348. doi: 10.1172/JCI109134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Filho E. M., Malnic G. H in cortical peritubular capillaries of rat kidney. Pflugers Arch. 1976 Jun 22;363(3):211–217. doi: 10.1007/BF00594603. [DOI] [PubMed] [Google Scholar]
  11. Gennari F. J., Caflisch C. R., Johns C., Maddox D. A., Cohen J. J. PCO2 measurements in surface proximal tubules and peritubular capillaries of the rat kidney. Am J Physiol. 1982 Jan;242(1):F78–F85. doi: 10.1152/ajprenal.1982.242.1.F78. [DOI] [PubMed] [Google Scholar]
  12. Giebisch G., Malnic G., De Mello G. B., De Mello Aires M. Kinetics of luminal acidification in cortical tubules of the rat kidney. J Physiol. 1977 Jun;267(3):571–599. doi: 10.1113/jphysiol.1977.sp011827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lang F., Quehenberger P., Greger R., Silbernagl S., Stockinger P. Evidence for a bicarbonate leak in the proximal tubule of the rat kidney. Pflugers Arch. 1980 Aug;386(3):239–244. doi: 10.1007/BF00587474. [DOI] [PubMed] [Google Scholar]
  15. Malnic G. CO2 equilibria in renal tissue. Am J Physiol. 1980 Oct;239(4):F307–F318. doi: 10.1152/ajprenal.1980.239.4.F307. [DOI] [PubMed] [Google Scholar]
  16. Malnic G., Vieira F. L. The antimony microelectrode in kidney micropuncture. Yale J Biol Med. 1972 Jun-Aug;45(3-4):356–367. [PMC free article] [PubMed] [Google Scholar]
  17. Malnic G., de Mello-Aires M. Kinetic study of bicarbonate reabsorption in proximal tubule of the rat. Am J Physiol. 1971 Jun;220(6):1759–1767. doi: 10.1152/ajplegacy.1971.220.6.1759. [DOI] [PubMed] [Google Scholar]
  18. Mello Aires M., Malnic G. Peritubular pH and PCO'2 in renal tubular acidification. Am J Physiol. 1975 Jun;228(6):1766–1774. doi: 10.1152/ajplegacy.1975.228.6.1766. [DOI] [PubMed] [Google Scholar]
  19. PITTS R. F. Mechanisms for stabilizing the alkaline reserves of the body. Harvey Lect. 1952;48:172–209. [PubMed] [Google Scholar]
  20. RECTOR F. C., Jr, SELDIN D. W., ROBERTS A. D., Jr, SMITH J. S. The role of plasma CO2 tension and carbonic anhydrase activity in the renal reabsorption of bicarbonate. J Clin Invest. 1960 Nov;39:1706–1721. doi: 10.1172/JCI104193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rubio C. R., de Mello G. B., Mangili O. C., Malnic G. H+ ion secretion in proximal tubule of low-Co2/HCO-3 perfused isolated rat kidney. Pflugers Arch. 1982 Mar;393(1):63–70. doi: 10.1007/BF00582393. [DOI] [PubMed] [Google Scholar]
  22. Sasaki S., Berry C. A., Rector F. C., Jr Effect of luminal and peritubular HCO3(-) concentrations and PCO2 on HCO3(-) reabsorption in rabbit proximal convoluted tubules perfused in vitro. J Clin Invest. 1982 Sep;70(3):639–649. doi: 10.1172/JCI110658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schwartz G. J. Na+-dependent H+ efflux from proximal tubule: evidence for reversible Na+-H+ exchange. Am J Physiol. 1981 Oct;241(4):F380–F385. doi: 10.1152/ajprenal.1981.241.4.F380. [DOI] [PubMed] [Google Scholar]
  24. Schwartz J. H. H+ current response to CO2 and carbonic anhydrase inhibition in turtle bladder. Am J Physiol. 1976 Aug;231(2):565–572. doi: 10.1152/ajplegacy.1976.231.2.565. [DOI] [PubMed] [Google Scholar]
  25. Schwartz J. H., Steinmetz P. R. CO2 requirements for H+ secretion by the isolated turtle bladder. Am J Physiol. 1971 Jun;220(6):2051–2057. doi: 10.1152/ajplegacy.1971.220.6.2051. [DOI] [PubMed] [Google Scholar]
  26. Thomas R. C. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J Physiol. 1976 Mar;255(3):715–735. doi: 10.1113/jphysiol.1976.sp011305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vieira F. L., Malnic G. Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Am J Physiol. 1968 Apr;214(4):710–718. doi: 10.1152/ajplegacy.1968.214.4.710. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES