Abstract
L cells (a mouse fibroblast cell line) and macrophages have been reported to exhibit slow oscillatory hyperpolarizations and relatively low membrane potentials, when measured with glass micro-electrodes. This paper describes the role of micro-electrode-induced leakage in these oscillations for L cells and a mouse macrophage cell line (P388D1). Both L cells and macrophages showed fast negative-going peak-shaped potential transients upon micro-electrode entry. This shows that the micro-electrode introduces a leakage conductance across the membrane. The peak values of these fast transients were less negative for L cells (-17 mV) than for macrophages (-39 mV), although their sustained resting membrane potentials were about equal (-13 mV). This indicates that the pre-impaled membrane potential of macrophages is more negative than that of L cells. Ionophoretic injection of Ca2+ into the P388D1 macrophages showed the existence of a Ca2+ -dependent hyperpolarizing conductance presumed to be involved in the oscillatory hyperpolarizations of L cells and macrophages. Cells increased in size by X-ray irradiation to reduce membrane input resistances were still found to be susceptible to micro-electrode-induced leakage. Impalement transients upon entry of a second electrode during a hyperpolarization evoked by a first electrode, were often step-shaped instead of peak-shaped due to the high membrane conductance associated with hyperpolarization. Since peak-shaped impalement transients were always seen with the first impalement both in oscillating and non-oscillating cells, oscillatory hyperpolarizations cannot be regarded as spontaneously occurring in the unperturbed cells but are induced by micro-electrode penetration. Since the hyperpolarizing response can be evoked by ionophoretic injection of Ca2+, and oscillatory as well as single hyperpolarizing responses are absent in a Ca2+ -free medium, it is concluded that the Ca2+ needed intracellularly to activate the hyperpolarizing responses enters the cell via the leakage pathway introduced by the measuring electrode.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Castranova V., Bowman L., Miles P. R. Transmembrane potential and ionic content of rat alveolar macrophages. J Cell Physiol. 1979 Dec;101(3):471–479. doi: 10.1002/jcp.1041010313. [DOI] [PubMed] [Google Scholar]
- Dos Reis G. A., Oliveira-Castro G. M. Electrophysiology of phagocytic membranes. I. Potassium-dependent slow membrane hyperpolarizations in mice macrophages. Biochim Biophys Acta. 1977 Sep 19;469(3):257–263. doi: 10.1016/0005-2736(77)90161-4. [DOI] [PubMed] [Google Scholar]
- Dos Reis G. A., Persechini P. M., Ribeiro J. M., Oliveira-Castro G. M. Electrophysiology of phagocytic membranes. II. Membrane potential and induction of slow hyperpolarizations in activated macrophages. Biochim Biophys Acta. 1979 Apr 4;552(2):331–340. doi: 10.1016/0005-2736(79)90287-6. [DOI] [PubMed] [Google Scholar]
- Gallin E. K., Gallin J. I. Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes. J Cell Biol. 1977 Oct;75(1):277–289. doi: 10.1083/jcb.75.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallin E. K., Wiederhold M. L., Lipsky P. E., Rosenthal A. S. Spontaneous and induced membrane hyperpolarizations in macrophages. J Cell Physiol. 1975 Dec;86 (Suppl 2)(3 Pt 2):653–661. doi: 10.1002/jcp.1040860510. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Henkart M. P., Nelson P. G. Evidence for an intracellular calcium store releasable by surface stimuli ifibroblasts (L cells). J Gen Physiol. 1979 May;73(5):655–673. doi: 10.1085/jgp.73.5.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ince C., Ypey D. L., Diesselhoff-Den Dulk M. M., Visser J. A., De Vos A., Van Furth R. Micro-CO2-incubator for use on a microscope. J Immunol Methods. 1983 May 27;60(1-2):269–275. doi: 10.1016/0022-1759(83)90354-x. [DOI] [PubMed] [Google Scholar]
- Ince C., Ypey D. L., Van Furth R., Verveen A. A. Estimation of the membrane potential of cultured macrophages from the fast potential transient upon microelectrode entry. J Cell Biol. 1983 Mar;96(3):796–801. doi: 10.1083/jcb.96.3.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koren H. S., Handwerger B. S., Wunderlich J. R. Identification of macrophage-like characteristics in a cultured murine tumor line. J Immunol. 1975 Feb;114(2 Pt 2):894–897. [PubMed] [Google Scholar]
- Kouri J., Noa M., Diaz B., Niubo E. Hyperpolarisation of rat peritoneal macrophages phagocytosing latex particles. Nature. 1980 Feb 28;283(5750):868–869. doi: 10.1038/283868a0. [DOI] [PubMed] [Google Scholar]
- Lamb J. F., MacKinnon M. G. The membrane potential and permeabilities of the L cell membrane to Na, K and chloride. J Physiol. 1971 Mar;213(3):683–689. doi: 10.1113/jphysiol.1971.sp009408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lassen U. V., Pape L., Vestergaard-Bogind B., Bengtson O. Calcium-related hyperpolarization of the Amphiuma red cell membrane following micropuncture. J Membr Biol. 1974;18(2):125–144. doi: 10.1007/BF01870107. [DOI] [PubMed] [Google Scholar]
- Nelson P. G., Henkart M. P. Oscillatory membrane potential changes in cells of mesenchymal origin: the role of an intracellular calcium regulating system. J Exp Biol. 1979 Aug;81:49–61. doi: 10.1242/jeb.81.1.49. [DOI] [PubMed] [Google Scholar]
- Okada Y., Doida Y., Roy G., Tsuchiya W., Inouye K., Inouye A. Oscillations of membrane potential in L cells. I. Basic characteristics. J Membr Biol. 1977 Aug 4;35(4):319–335. doi: 10.1007/BF01869957. [DOI] [PubMed] [Google Scholar]
- Okada Y., Tsuchiya W., Inouye A. Oscillations of membrane potential in L cells. IV. Role of intracellular Ca2+ in hyperpolarizing excitability. J Membr Biol. 1979 Jun 7;47(4):357–376. doi: 10.1007/BF01869744. [DOI] [PubMed] [Google Scholar]
- Okada Y., Tsuchiya W., Yada T. Calcium channel and calcium pump involved in oscillatory hyperpolarizing responses of L-strain mouse fibroblasts. J Physiol. 1982 Jun;327:449–461. doi: 10.1113/jphysiol.1982.sp014242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada Y., Tsuchiya W., Yada T., Yano J., Yawo H. Phagocytic activity and hyperpolarizing responses in L-strain mouse fibroblasts. J Physiol. 1981;313:101–119. doi: 10.1113/jphysiol.1981.sp013653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliveira-Castro G. M., Dos Reis G. A. Electrophysiology of phagocytic membranes. III. Evidence for a calcium-dependent potassium permeability change during slow hyperpolarizations of activated macrophages. Biochim Biophys Acta. 1981 Jan 22;640(2):500–511. doi: 10.1016/0005-2736(81)90474-0. [DOI] [PubMed] [Google Scholar]
- Persechini P. M., Araujo E. G., Oliveira-Castro G. M. Electrophysiology of phagocytic membranes: induction of slow membrane hyperpolarizations in macrophages and macrophage polykaryons by intracellular calcium injection. J Membr Biol. 1981;61(2):81–90. doi: 10.1007/BF02007634. [DOI] [PubMed] [Google Scholar]
- Tsuchiya W., Okada Y., Yano J., Inouye A., Sasaki S., Doida Y. Effects of cytochalasin B and local anesthetics on electrical and morphological properties in L cells. Exp Cell Res. 1981 May;133(1):83–92. doi: 10.1016/0014-4827(81)90359-1. [DOI] [PubMed] [Google Scholar]
- Tsuchiya W., Okada Y., Yano J., Murai A., Miyahara T., Tanaka T. Membrane potential changes associated with pinocytosis of serum lipoproteins in L cells. Exp Cell Res. 1981 Dec;136(2):271–278. doi: 10.1016/0014-4827(81)90005-7. [DOI] [PubMed] [Google Scholar]
- WHITMORE G. F., TILL J. E., GWATKIN R. B., SIMINOVITCH L., GRAHAM A. F. Increase of cellular constituents in x-irradiated mammalian cells. Biochim Biophys Acta. 1958 Dec;30(3):583–590. doi: 10.1016/0006-3002(58)90105-7. [DOI] [PubMed] [Google Scholar]
