Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Jul;352:685–701. doi: 10.1113/jphysiol.1984.sp015317

Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle.

F Guharay, F Sachs
PMCID: PMC1193237  PMID: 6086918

Abstract

The membrane of tissue-cultured chick pectoral muscle contains an ionic channel which is activated by membrane stretch. Nicotinic channels and Ca2+-activated K+ channels are not affected by stretch. In 150 mM-external K+ and 150 mM-internal Na+ the channel has a conductance of 70 pS, linear current-voltage relationship between -50 and -140 mV and a reversal potential of +30 mV. Kinetic analysis of single-channel records indicates that there are one open (O) and three closed (C) states. The data can be fitted by the reaction scheme: C1-C2-C3-O. Only the rate constant that governs the C1-C2 transition (k1,2) is stretch-sensitive. None of the rates are voltage-sensitive. The rate constant k1,2 varies with the square of the tension as k1, 2 = k0 X e alpha T2, where alpha is a constant describing the sensitivity to stretch and T is the tension. A typical value of alpha is 0.08 (dyn cm-1)-2. Following exposure to cytochalasin B the channel becomes more sensitive to stretch. The stretch-sensitivity constant, alpha, increases from 0.08 to 2.4 (dyn cm-1)-2. The probability of the channel being open is strongly dependent upon the extracellular K+ concentration. With a suction of 2 cmHg the probability increases from 0.004 in normal saline (5 mM-K+) to 0.26 in 150 mM-K+. The channel appears to gather force from a large area of membrane (greater than 3 X 10(5) A2), probably by a cytochalasin-resistant cytoskeletal network.

Full text

PDF
685

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach A., Sachs F. Patch clamp studies of single ionic channels. Annu Rev Biophys Bioeng. 1984;13:269–302. doi: 10.1146/annurev.bb.13.060184.001413. [DOI] [PubMed] [Google Scholar]
  2. Brown H. M., Ottoson D., Rydqvist B. Crayfish stretch receptor: an investigation with voltage-clamp and ion-sensitive electrodes. J Physiol. 1978 Nov;284:155–179. doi: 10.1113/jphysiol.1978.sp012533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Colquhoun D., Hawkes A. G. On the stochastic properties of single ion channels. Proc R Soc Lond B Biol Sci. 1981 Mar 6;211(1183):205–235. doi: 10.1098/rspb.1981.0003. [DOI] [PubMed] [Google Scholar]
  4. Corey D. P., Hudspeth A. J. Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci. 1983 May;3(5):962–976. doi: 10.1523/JNEUROSCI.03-05-00962.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edwards C., Ottoson D., Rydqvist B., Swerup C. The permeability of the transducer membrane of the crayfish stretch receptor to calcium and other divalent cations. Neuroscience. 1981;6(7):1455–1460. doi: 10.1016/0306-4522(81)90200-1. [DOI] [PubMed] [Google Scholar]
  6. Evans E. A., Waugh R., Melnik L. Elastic area compressibility modulus of red cell membrane. Biophys J. 1976 Jun;16(6):585–595. doi: 10.1016/S0006-3495(76)85713-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ganot G., Wong B. S., Binstock L., Ehrenstein G. Reversal potentials corresponding to mechanical stimulation and leakage current in Myxicola giant axons. Biochim Biophys Acta. 1981 Dec 7;649(2):487–491. doi: 10.1016/0005-2736(81)90440-5. [DOI] [PubMed] [Google Scholar]
  8. HUBBARD S. J. A study of rapid mechanical events in a mechanoreceptor. J Physiol. 1958 Apr 30;141(2):198–218. doi: 10.1113/jphysiol.1958.sp005968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  10. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  11. Horn R., Lange K. Estimating kinetic constants from single channel data. Biophys J. 1983 Aug;43(2):207–223. doi: 10.1016/S0006-3495(83)84341-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hunt C. C., Ottoson D. Impulse activity and receptor potential of primary and secondary endings of isolated mammalian muscle spindles. J Physiol. 1975 Oct;252(1):259–281. doi: 10.1113/jphysiol.1975.sp011143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. JULIAN F. J., GOLDMAN D. E. The effects of mechanical stimulation on some electrical properties of axons. J Gen Physiol. 1962 Nov;46:297–313. doi: 10.1085/jgp.46.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KATZ B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J Physiol. 1950 Oct 16;111(3-4):261–282. doi: 10.1113/jphysiol.1950.sp004479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kilian P. L., Schacht J. Sound stimulates labeling of polyphosphoinositides in the auditory organ of the noctuid moth. J Neurochem. 1980 Mar;34(3):709–712. doi: 10.1111/j.1471-4159.1980.tb11201.x. [DOI] [PubMed] [Google Scholar]
  16. Kistler J., Stroud R. M., Klymkowsky M. W., Lalancette R. A., Fairclough R. H. Structure and function of an acetylcholine receptor. Biophys J. 1982 Jan;37(1):371–383. doi: 10.1016/S0006-3495(82)84685-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klie J. W., Wellhöner H. H. Voltage clamp studies on the stretch response in the neuron of the slowly adapting crayfish stretch receptor. Pflugers Arch. 1973 Aug 17;342(2):93–104. doi: 10.1007/BF00587840. [DOI] [PubMed] [Google Scholar]
  18. Korn H., Triller A., Mallet A., Faber D. S. Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons. Science. 1981 Aug 21;213(4510):898–901. doi: 10.1126/science.6266015. [DOI] [PubMed] [Google Scholar]
  19. Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesicles. Biophys J. 1981 Sep;35(3):637–652. doi: 10.1016/S0006-3495(81)84817-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Measurement of the lateral compressibility of several phospholipid bilayers. Biophys J. 1982 Mar;37(3):667–672. [PMC free article] [PubMed] [Google Scholar]
  21. Nelson P. G., Peacock J., Minna J. An active electrical response in fibroblasts. J Gen Physiol. 1972 Jul;60(1):58–71. doi: 10.1085/jgp.60.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nigg E. A., Cherry R. J. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4702–4706. doi: 10.1073/pnas.77.8.4702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Obara S. Effects of some organic cations on generator potential of crayfish stretch receptor. J Gen Physiol. 1968 Aug;52(2):363–386. doi: 10.1085/jgp.52.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pallotta B. S., Magleby K. L., Barrett J. N. Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature. 1981 Oct 8;293(5832):471–474. doi: 10.1038/293471a0. [DOI] [PubMed] [Google Scholar]
  25. Patlak J., Horn R. Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches. J Gen Physiol. 1982 Mar;79(3):333–351. doi: 10.1085/jgp.79.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Petersen N. O., McConnaughey W. B., Elson E. L. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5327–5331. doi: 10.1073/pnas.79.17.5327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. RAND R. P. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. II. VISCOELASTIC BREAKDOWN OF THE MEMBRANE. Biophys J. 1964 Jul;4:303–316. doi: 10.1016/s0006-3495(64)86784-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roberts A., Bush B. M. Coxal muscle receptors in the crab: the receptor current and some properties of the receptor nerve fibres. J Exp Biol. 1971 Apr;54(2):515–524. doi: 10.1242/jeb.54.2.515. [DOI] [PubMed] [Google Scholar]
  29. Sachs F., Neil J., Barkakati N. The automated analysis of data from single ionic channels. Pflugers Arch. 1982 Dec;395(4):331–340. doi: 10.1007/BF00580798. [DOI] [PubMed] [Google Scholar]
  30. Saum W. R., Ayachi S., Brown A. M. Actions of sodium and potassium ions on baroreceptors of normotensive and spontaneously hypertensive rats. Circ Res. 1977 Dec;41(6):768–774. doi: 10.1161/01.res.41.6.768. [DOI] [PubMed] [Google Scholar]
  31. TERZUOLO C. A., WASHIZU Y. Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of Crustacea. J Neurophysiol. 1962 Jan;25:56–66. doi: 10.1152/jn.1962.25.1.56. [DOI] [PubMed] [Google Scholar]
  32. Wolfe J., Steponkus P. L. The stress-strain relation of the plasma membrane of isolated plant protoplasts. Biochim Biophys Acta. 1981 May 20;643(3):663–668. doi: 10.1016/0005-2736(81)90363-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES