Abstract
The gastric-acid secretory potency of gastrin peptides was investigated in vivo, in conscious cats prepared with gastric fistula, and in vitro, with kitten isolated gastric mucosae. The influence of peptide length on potency was investigated by comparing synthetic human gastrin heptadecapeptide, non-sulphate (shG17ns) with a synthetic gastrin butyloxycarbonyl hexapeptide (G6ns), and the influence of sulphation by comparison of G6ns with its sister sulphated peptide (G6s). When exogenous doses were compared, shG17ns was the most potent peptide (mean exogenous dose for half-maximal stimulation (EDe50) : 0.33 nmol kg-1 h-1), and was 15.8 times more potent than G6ns (EDe50:5.14 nmol kg-1 h-1). This potency ratio was reduced to 9.4 when circulating immunoreactive concentrations of the two peptides were compared (mean circulating concentration for half-maximal stimulation (EDc50) : shG17ns, 201 pM; G6ns, 1890 pM). The greater potency ratio when exogenous doses were compared was due to the greater metabolic clearance rate (m.c.r.) of the shorter gastrin (m.c.r.: shG17ns, 37 ml kg-1 min-1; G6ns, 121 ml kg-1 min-1). In vitro, shG17ns (mean concentration for half-maximal stimulation (EC50) : 1.99 nM) was 2.8 times more potent than G6ns (EC50: 5.57 nM). Sulphation of the hexapeptide increased its potency 3.6-fold when exogenous doses were compared (EDe50 G6s: 1.42 nmol kg-1 h-1). The greater potency of the sulphated peptide appeared to be due to its lower m.c.r. (20 ml kg-1 min-1), and was eliminated when circulating concentrations were compared; potency ratio G6ns: G6s, 1.1. We conclude that the increased potency of short gastrin peptides observed upon sulphation is likely to be due to increased resistance to metabolic clearance. Part of the increased potency observed with increasing peptide length can also be explained by increased resistance to clearance, but the small potency difference in vitro may reflect greater affinity for gastrin receptors.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anastasi A., Bernardi L., Bertaccini G., Bosisio G., De Castiglione R., Erspamer V., Goffredo O., Impicciatore M. Synthetic peptides related to caerulein. 1. Experientia. 1968 Aug 15;24(8):771–773. doi: 10.1007/BF02144858. [DOI] [PubMed] [Google Scholar]
- Blair E. L., Grund E. R., Lund P. K., Piercy A., Reed J. D., Sanders D. J., Shale D., Shaw B., Wilkinson J. Comparison of vagal and meat stimulation on gastric acid secretion and serum gastrin. J Physiol. 1977 Mar;266(1):157–172. doi: 10.1113/jphysiol.1977.sp011761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blair E. L., Grund E. R., Lund P. K., Sanders D. J. A possible origin of circulating gastrin component IV in cats. J Physiol. 1977 Dec;273(3):561–572. doi: 10.1113/jphysiol.1977.sp012110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blair E. L., Grund E. R., Reed J. D., Sanders D. J., Sanger G., Shaw B. The effect of sympathetic nerve stimulation on serum gastrin, gastric acid secretion and mucosal blood flow responses to meat extract stimulation in anaesthetized cats. J Physiol. 1975 Dec;253(2):493–504. doi: 10.1113/jphysiol.1975.sp011202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blair E. L., Hirst B. H., Lund P. K., Reed J. D., Sanders D. J., Shaw B. Gastric acid and pepsin-stimulating activity of non-sulphated fragments of gastrin in the cat. Digestion. 1980;20(3):190–200. doi: 10.1159/000198439. [DOI] [PubMed] [Google Scholar]
- Boniface J., Picone D., Schebalin M., Zfass A. M., Makhlouf G. M. Clearance rate, half-life, and secretory potency of human gastrin-17-I in different species. Gastroenterology. 1976 Aug;71(2):291–294. [PubMed] [Google Scholar]
- Carter D. C., Taylor I. L., Elashoff J., Grossman M. I. Reappraisal of the secretory potency and disappearance rate of pure human minigastrin. Gut. 1979 Aug;20(8):705–708. doi: 10.1136/gut.20.8.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chowdhury J. R., Berkowitz J. M., Praissman M., Fara J. W. Effect of sulfated and non-sulfated gastrin and octapeptide-cholecystokinin on cat gall bladder in vitro. Experientia. 1976 Sep 15;32(9):1173–1175. doi: 10.1007/BF01927609. [DOI] [PubMed] [Google Scholar]
- DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
- Debas H. T., Walsh J. H., Grossman M. I. Pure human minigastrin: secretory potency and disappearance rate. Gut. 1974 Sep;15(9):686–689. doi: 10.1136/gut.15.9.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deschodt-Lanckman M., Bui N. D., Noyer M., Christophe J. Degradation of cholecystokinin-like peptides by a crude rat brain synaptosomal fraction: a study by high pressure liquid chromatography. Regul Pept. 1981 Apr;2(1):15–30. doi: 10.1016/0167-0115(81)90062-8. [DOI] [PubMed] [Google Scholar]
- Dockray G. J., Gregory R. A., Tracy H. J., Zhu W. Y. Postsecretory processing of heptadecapeptide gastrin: conversion to C-terminal immunoreactive fragments in the circulation of the dog. Gastroenterology. 1982 Jul;83(1 Pt 2):224–232. [PubMed] [Google Scholar]
- Dockray G. J., Walsh J. H. Amino terminal gastrin fragment in serum of Zollinger-Ellison syndrome patients. Gastroenterology. 1975 Feb;68(2):222–230. [PubMed] [Google Scholar]
- Forte J. G., Forte T. M., Machen T. E. Histamine-stimulated hydrogen ion secretion by in vitro piglet gastric mucosa. J Physiol. 1975 Jan;244(1):15–31. doi: 10.1113/jphysiol.1975.sp010782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREGORY R. A., TRACY H. J. THE CONSTITUTION AND PROPERTIES OF TWO GASTRINS EXTRACTED FROM HOG ANTRAL MUCOSA. Gut. 1964 Apr;5:103–114. [PMC free article] [PubMed] [Google Scholar]
- Hirst B. H., Labib L. A., Reed J. D. Characteristics and tachyphylaxis of gastrin-stimulated gastric acid secretion in the cat. J Physiol. 1978 Mar;276:1–11. doi: 10.1113/jphysiol.1978.sp012216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirst B. H., Reed J. D., Lund P. K., Sanders D. J. Sensitivity of parietal cells to gastrin in the cat: comparison with man and dog. Digestion. 1980;20(5):300–306. doi: 10.1159/000198451. [DOI] [PubMed] [Google Scholar]
- Hirst B. H., Reed J. D., Shaw B. Gastric acid and pepsin stimulating activity of gastrin fragments in the cat [proceedings]. J Physiol. 1977 Oct;272(1):65P–65P. [PubMed] [Google Scholar]
- Hirst B. H., Shaw B. Equipotency of little and minigastrin in the cat. Digestion. 1981;21(5):263–266. doi: 10.1159/000198572. [DOI] [PubMed] [Google Scholar]
- Hirst B. H., Storey G. E., Venables C. W. Polytetrafluoroethylene (PTFE): a new material for the construction of gastrointestinal cannulae. Lab Anim. 1982 Jan;16(1):33–35. doi: 10.1258/002367782780908788. [DOI] [PubMed] [Google Scholar]
- Holland J., Hirst B. H., Shaw B. Structure-activity studies with cholecystokinin on gastric secretion in the cat. Peptides. 1982 Nov-Dec;3(6):891–895. doi: 10.1016/0196-9781(82)90056-0. [DOI] [PubMed] [Google Scholar]
- Jensen S. L., Rehfeld J. F., Holst J. J., Fahrenkrug J., Nielsen O. V., Schaffalitzky de Muckadell O. B. Secretory effects of gastrins on isolated perfused porcine pancreas. Am J Physiol. 1980 Feb;238(2):E186–E192. doi: 10.1152/ajpendo.1980.238.2.E186. [DOI] [PubMed] [Google Scholar]
- Koulischer D., Moroder L., Deschodt-Lanckman M. Degradation of cholecystokinin octapeptide, related fragments and analogs by human and rat plasma in vitro. Regul Pept. 1982 Aug;4(3):127–139. doi: 10.1016/0167-0115(82)90080-5. [DOI] [PubMed] [Google Scholar]
- Makhlouf G. M. Potency of stimulants and half-life of hormonal peptides in species of different body size. Gastroenterology. 1973 Jul;65(1):170–173. [PubMed] [Google Scholar]
- Negri L., Erspamer V. Action of caerulein and caerulein-like peptides on "short-circuit current" and acid secretion in the isolated gastric mucosa of amphibians. Naunyn Schmiedebergs Arch Pharmacol. 1973;277(4):401–412. doi: 10.1007/BF00500999. [DOI] [PubMed] [Google Scholar]
- Rehfeld J. F. Four basic characteristics of the gastrin-cholecystokinin system. Am J Physiol. 1981 Apr;240(4):G255–G266. doi: 10.1152/ajpgi.1981.240.4.G255. [DOI] [PubMed] [Google Scholar]
- Schrumpf E., Semb L. S. The metabolic clearance rate and half-life of synthetic human gastrin in dogs. Scand J Gastroenterol. 1973;8(3):203–207. [PubMed] [Google Scholar]
- Schrumpf E., Semb L. S., Vold H. Metabolic clearance and disappearance rates of synthetic human gastrin in man. Scand J Gastroenterol. 1973;8(8):731–734. [PubMed] [Google Scholar]
- Strunz U. T., Thompson M. R., Elashoff J., Grossman M. I. Hepatic inactivation of gastrins of various chain lengths in dogs. Gastroenterology. 1978 Mar;74(3):550–553. [PubMed] [Google Scholar]
- TRACY H. J., GREGORY R. A. PHYSIOLOGICAL PROPERTIES OF A SERIES OF SYNTHETIC PEPTIDES STRUCTURALLY RELATED TO GASTRIN I. Nature. 1964 Dec 5;204:935–938. doi: 10.1038/204935a0. [DOI] [PubMed] [Google Scholar]
- Takeuchi K., Speir G. R., Johnson L. R. Mucosal gastrin receptor. IV. Binding specificity. Am J Physiol. 1980 Nov;239(5):G395–G399. doi: 10.1152/ajpgi.1980.239.5.G395. [DOI] [PubMed] [Google Scholar]
- Walsh J. H., Debas H. T., Grossman M. I. Pure human big gastrin. Immunochemical properties, disappearance half time, and acid-stimulating action in dogs. J Clin Invest. 1974 Aug;54(2):477–485. doi: 10.1172/JCI107783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh J. H., Isenberg J. I., Ansfield J., Maxwell V. Clearance and acid-stimulating action of human big and little gastrins in duodenal ulcer subjects. J Clin Invest. 1976 May;57(5):1125–1131. doi: 10.1172/JCI108379. [DOI] [PMC free article] [PubMed] [Google Scholar]