Abstract
The role of increased extracellular K+ concentration ([K+]o) in the production of the early electrophysiological changes induced by myocardial ischaemia, was evaluated by recordings of monophasic action potentials and the paced endocardial evoked response. Changes in the duration of local repolarization and conduction time were evaluated during ischaemia, K+ infusion and hypoxia. Raising [K+]o levels in systemic arterial blood from 3.4 +/- 0.5 mmol l-1 to 5.9 +/- 1.5 mmol l-1 produced a similar shortening of repolarization as was seen during ischaemia. Prolongation of conduction time occurred only when the [K+]o levels rose to 8.8 +/- 1.3 mmol l-1. The conduction time slowing during acute ischaemia was always greater and occurred at lower [K+]o levels than that produced by K+ infusion at rates equivalent to the post-ischaemic myocardial venous effluent. Monophasic action potential amplitude and upstroke velocity were reduced in ischaemia but not markedly affected by the increase in [K+]o. Absolute reduction in repolarization time during K+ infusion was more marked at the apex than at the base in the epicardial recordings. The superimposition of hypoxia on hyperkalaemia resulted in marked slowing of repolarization and conduction time. Many but not all of the early electrophysiological abnormalities of acute ischaemia in the intact heart can be related to raised [K+]o.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boineau J. P., Cox J. L. Slow ventricular activation in acute myocardial infarction. A source of re-entrant premature ventricular contractions. Circulation. 1973 Oct;48(4):702–713. doi: 10.1161/01.cir.48.4.702. [DOI] [PubMed] [Google Scholar]
- Cheneval J. P., Hyde A., Blondel B., Girardier L. Heart cells in culture. Metabolism, action potential and transmembrane ionic movements. J Physiol (Paris) 1972;64(5):413–430. [PubMed] [Google Scholar]
- Chesnais J. M., Coraboeuf E., Sauviat M. P., Vassas J. M. Sensitivity to H, Li and Mg ions of the slow inward sodium current in frog atrial fibres. J Mol Cell Cardiol. 1975 Sep;7(9):627–642. doi: 10.1016/0022-2828(75)90140-6. [DOI] [PubMed] [Google Scholar]
- Cohen I., Giles W., Noble D. Cellular basis for the T wave of the electrocardiogram. Nature. 1976 Aug 19;262(5570):657–661. doi: 10.1038/262657a0. [DOI] [PubMed] [Google Scholar]
- Donaldson R. M., Rickards A. F. Evaluation of drug-induced changes in myocardial repolarisation using the paced evoked response. Br Heart J. 1982 Oct;48(4):381–387. doi: 10.1136/hrt.48.4.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donaldson R. M., Taggart P., Nashat F., Abed J., Rickards A. F., Noble D. Study of the electrophysiological effects of early or subendocardial ischaemia with intracavitary electrodes in the dog. Clin Sci (Lond) 1983 Dec;65(6):579–588. doi: 10.1042/cs0650579. [DOI] [PubMed] [Google Scholar]
- Downar E., Janse M. J., Durrer D. The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation. 1977 Aug;56(2):217–224. doi: 10.1161/01.cir.56.2.217. [DOI] [PubMed] [Google Scholar]
- Ettinger P. O., Regan T. J., Oldewurtel H. A., Khan M. I. Ventricular conduction delay and arrhythmias during regional hyperkalemia in the dog. Electrical and myocardial ion alterations. Circ Res. 1973 Nov;33(5):521–531. doi: 10.1161/01.res.33.5.521. [DOI] [PubMed] [Google Scholar]
- Friedman P. L., Stewart J. R., Fenoglio J. J., Jr, Wit A. L. Survival of subendocardial Purkinje fibers after extensive myocardial infarction in dogs. Circ Res. 1973 Nov;33(5):597–611. doi: 10.1161/01.res.33.5.597. [DOI] [PubMed] [Google Scholar]
- HARRIS A. S., BISTENI A., RUSSELL R. A., BRIGHAM J. C., FIRESTONE J. E. Excitatory factors in ventricular tachycardia resulting from myocardial ischemia; potassium a major excitant. Science. 1954 Feb 12;119(3085):200–203. doi: 10.1126/science.119.3085.200. [DOI] [PubMed] [Google Scholar]
- Hill J. L., Gettes L. S. Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation. 1980 Apr;61(4):768–778. doi: 10.1161/01.cir.61.4.768. [DOI] [PubMed] [Google Scholar]
- Hirche H., Franz C., Bös L., Bissig R., Lang R., Schramm M. Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol. 1980 Jun;12(6):579–593. doi: 10.1016/0022-2828(80)90016-4. [DOI] [PubMed] [Google Scholar]
- Janse M. J., Kléber A. G. Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res. 1981 Nov;49(5):1069–1081. doi: 10.1161/01.res.49.5.1069. [DOI] [PubMed] [Google Scholar]
- Kaplinsky E., Ogawa S., Balke C. W., Dreifus L. S. Two periods of early ventricular arrhythmia in the canine acute myocardial infarction model. Circulation. 1979 Aug;60(2):397–403. doi: 10.1161/01.cir.60.2.397. [DOI] [PubMed] [Google Scholar]
- Kléber A. G., Janse M. J., van Capelle F. J., Durrer D. Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circ Res. 1978 May;42(5):603–613. doi: 10.1161/01.res.42.5.603. [DOI] [PubMed] [Google Scholar]
- Kohlhardt M., Kübler M. The influence of metabolic inhibitors upon the transmembrane slow inward current in the mammalian ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol. 1975;290(2-3):265–274. doi: 10.1007/BF00510555. [DOI] [PubMed] [Google Scholar]
- Lab M. J., Woollard K. V. Monophasic action potentials, electrocardiograms and mechanical performance in normal and ischaemic epicardial segments of the pig ventricle in situ. Cardiovasc Res. 1978 Sep;12(9):555–565. doi: 10.1093/cvr/12.9.555. [DOI] [PubMed] [Google Scholar]
- Lazzara R., El-Sherif N., Hope R. R., Scherlag B. J. Ventricular arrhythmias and electrophysiological consequences of myocardial ischemia and infarction. Circ Res. 1978 Jun;42(6):740–749. doi: 10.1161/01.res.42.6.740. [DOI] [PubMed] [Google Scholar]
- Lazzara R., el-Sherif N., Scherlag B. J. Early and late effects of coronary artery occlusion on canine Purkinje fibers. Circ Res. 1974 Sep;35(3):391–399. doi: 10.1161/01.res.35.3.391. [DOI] [PubMed] [Google Scholar]
- Mendez C., Mueller W. J., Merideth J., Moe G. K. Interaction of transmembrane potentials in canine Purkinje fibers and at Purkinje fiber-muscle junctions. Circ Res. 1969 Mar;24(3):361–372. doi: 10.1161/01.res.24.3.361. [DOI] [PubMed] [Google Scholar]
- Moréna H., Janse M. J., Fiolet J. W., Krieger W. J., Crijns H., Durrer D. Comparison of the effects of regional ischemia, hypoxia, hyperkalemia, and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart. Circ Res. 1980 May;46(5):634–646. doi: 10.1161/01.res.46.5.634. [DOI] [PubMed] [Google Scholar]
- Nargeot J. Current clamp and voltage clamp study of the inhibitory action of DNP on membrane electrical properties of frog auricular heart muscle. J Physiol (Paris) 1976;72(2):171–180. [PubMed] [Google Scholar]
- Olsson B., Varnauskas E., Korsgren M. Further improved method for measuring monophasic action potentials of the intact human heart. J Electrocardiol. 1971;4(1):19–23. doi: 10.1016/s0022-0736(71)80045-6. [DOI] [PubMed] [Google Scholar]
- Russell D. C., Smith J. H., Oliver M. F. Transmembrane potential changes and ventricular fibrillation during repetitive myocardial ischaemia in the dog. Br Heart J. 1979 Jul;42(1):88–96. doi: 10.1136/hrt.42.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOLOFF L. A., DE LOS SANTOS G. A., OPPENHEIMER M. J. Electrocardiographic changes produced by potassium and other ions injected into the coronary arteries of intact dogs. Circ Res. 1960 Mar;8:479–484. doi: 10.1161/01.res.8.2.479. [DOI] [PubMed] [Google Scholar]
- VASSALLE M. CARDIAC PACEMAKER POTENTIALS AT DIFFERENT EXTRA-AND INTRACELLULAR K CONCENTRATIONS. Am J Physiol. 1965 Apr;208:770–775. doi: 10.1152/ajplegacy.1965.208.4.770. [DOI] [PubMed] [Google Scholar]
- Vleugels A., Vereecke J., Carmeliet E. Ionic currents during hypoxia in voltage-clamped cat ventricular muscle. Circ Res. 1980 Oct;47(4):501–508. doi: 10.1161/01.res.47.4.501. [DOI] [PubMed] [Google Scholar]
- Wiegand V., Güggi M., Meesmann W., Kessler M., Greitschus F. Extracellular potassium activity changes in the canine myocardium after acute coronary occlusion and the influence of beta-blockade. Cardiovasc Res. 1979 May;13(5):297–302. doi: 10.1093/cvr/13.5.297. [DOI] [PubMed] [Google Scholar]
